Prestatyn

OLD FIRE STATION

Drainage Strategy Report

107011-RP-D-0001

Rev: P01

May 2024

Document History

Job Numb	er: 107011	Document Ref: RP-D-0001			
P02	Updated to Latest Proposals	RH	JP	13.05.2024	
P01	Drainage Strategy	RH	JP	10.05.2024	
Revision	Purpose Description	Originated	Authorised	Date	

Prestatyn Old Fire Station Drainage Strategy

Contents

			Page
I	Intro	duction	3
	1.1	Commission	3
	1.2	Existing Site	3
	1.3	Existing Drainage	3
	1.4	Existing Flood Design	3
	1.5	TAN 15	3
	1.6	Proposed Development	4
2	Drain	nage Proposals	5
	2.1	Foul Drainage	5
	2.2	Surface Water Drainage	6
	2.3	Ground Infiltration Techniques	6
	2.4	Discharge To Watercourse	6
	2.5	Surface Water Calculations	6
	2.6	Sustainable Drainage	7
	2.7	O&M Manual	7
3	Conc	lusions	8
	3.1	Conclusions	8
4	Арре	ndices	9
Арр	endix A -	- Site Information Drawing	10
Арр	endix B -	- Public Sewer Records	11
Арр	endix C -	- Existing Drainage Layout	12
Арр	endix D -	- Site Proposals	13
Арр	endix E -	- Preliminary Drainage Drawings	14
Арр	endix F -	- Surface Water Calculations	15
Арр	endix G -	- O&M Manual	16

1 Introduction

1.1 Commission

In April 2024, Cassidy + Ashton appointed JP Structural Design (JPS) on behalf of the Nant Hall Developments, to undertake this Drainage Strategy Report in support of a pre Planning Application submission for the redevelopment of the Old Fire House in Prestatyn to incorporate 18 apartments / 5 Holiday lets and commercial spaces.

1.2 Existing Site

The site covers an area south of Nant Hall Road, which was previously utilised as Council offices following its conversion from the old Fire Station. The site covers an area of approximately 1,670 m² as shown on the site information drawing in Appendix A. The site is bounded by Nant Hall Road to the north, the unnamed Ty Nant access road to the east & south. Private dwellings and the public Toilet block form the western boundary. The site is subsequently a non-uniform shape within an urban environment within significant falls / steps across it equating to approximately a 1.8m level difference South to North.

1.3 Existing Drainage

On-site investigations suggest that the site is served a mixture of Foul and surface water systems – the RWPs on the front elevation also discharge direct to the highway.

There are Public Foul & Surface Water Sewer systems located within Nant Hall Road and the Ty Nant Access road, that the site appears to have multiple connections to. Appendix B contains a copy of the public sewer record drawing, and following basic on-site investigations, Appendix C contains an Existing Drainage drawing depicting the current arrangements as best believed to exist.

1.4 Existing Flood Design

As stated above, the site covers an area of approximately 0.167 Ha, of which approximately 87% is currently impermeable surfacing. In accordance with the NRW Developers Advice Maps (shown in Appendix A, the site is located partially within Flood Zone CI – areas of the floodplain which are developed and served by significant infrastructure including flood defences. The majority of the site is located outside of the extreme flood extent – an area considered to have a less than 0.1% annual probability of flooding.

1.5 **TAN 15**

TAN 15 states that highly vulnerable and less vulnerable development can be considered in Flood Zone CI subject to the application of the justification test and acceptability of consequences.

1.5.1 Justification

Development will be justified if it can be demonstrated that:

- i. Its location in Zone C is necessary to assist, or be a part of, a local authority regeneration initiative or a local authority strategy required to sustain an existing settlement; **or**,
- ii. Its location in Zone C is necessary to contribute to key employment objectives supported by the local authority, and other key partners, to sustain an existing settlement or region;

and,

iii. It concurs with the aims of PPW and meets the definition of previously developed land;

and,

iv. The potential consequences of a flooding event for the particular type of development have been considered, and in terms of the criteria contained and found to be acceptable.

1.5.2 Conclusion

It is considered that the justification test will be satisfied as the development would support regeneration of Prestatyn Town centre initiatives and as it constitutes the redevelopment of an existing brownfield site with commercial use, it therefore meets the definition of previously developed land. A more detailed review of the criteria can be undertaken in due course, but it should be noted that the ground floor contains commercial developments which can incorporate flood resistant measures and therefore is not considered to be of concern.

1.6 Proposed Development

The scheme consists of the redevelopment of the Old Fire Station with the construction of an extension residential block.

Based upon the latest development plans the final impermeable area generated by the proposals will be approximately 0.134 Ha as shown on the impermeable area plan. Appendix D contains the site proposals, Appendix E the preliminary drainage layout and Appendix F the surface water calculations.

2 Drainage Proposals

2.1 Foul Drainage

The foul drainage peak discharge generated from the site will likely increase following completion of the scheme with the creation of domestic apartments and commercial areas as opposed to office space and welfare facilities.

However utilising the discharge units method, this is anticipated of having a maximum peak flow of 4 l/s on an intermittent usage, although this perhaps doesn't take into account that not all of the building may be occupied at any given time.

FEATURE	DISCHARGE UNITS	QUANTITY	TOTAL
WHB	0.3	32	9.6
SHOWER	0.4	24	9.6
SINGLE URINAL	0.4	0	0
SLAB URINAL	0.2	0	0
BATH	1.3	0	0
SINK	1.3	2	2.6
DISHWASHER	0.2	I	0.2
WASHING MACHINE	0.9	0	0
WC	1.6	32	51.2
FLOOR GULLY	1.0	0	0
BIDET	0.3	0	0

FREQUANCY FACTOR	K	DISCHARGE UNITS	73.2
Intermittent Use	0.5		
Frequent Use	0.7	FREQ FACTOR (k)	0.5
Congested Use	1.0		
Special Use	1.2	PEAK FLOW Q (L/Sec)	4.28

For the foul design proposals, we would therefore advocate a new separate foul drainage system is designed to serve the proposed development and connected to the existing foul network serving the site.

2.2 Surface Water Drainage

It is acknowledged that the satisfactory collection, control and discharge of storm water is now a principle planning and design consideration. Part H of the Building Regulations 2002 recommends that surface water run-off shall discharge to one of the following, listed in order of priority:

- a) an adequate soakaway or some other adequate infiltration system, or where that is not reasonably practicable,
- b) a watercourse, or, where that is not reasonably practicable,
- c) a sewer.

It is necessary to identify the most appropriate method of controlling and discharging surface water. The design should seek to improve the local run-off profile by using systems that can either attenuate run-off and reduce peak flow rates or positively impact on the existing flood profile. It is also acknowledged that this scheme will be subject to SAB Approval in due course.

2.3 Ground Infiltration Techniques

The site is expected to be underlain by sandy gravelly clays with water levels subject to seasonal and tidal variations. Infiltration rates would therefore be expected to be poor. Also due to the size and location of the site, it would also not be possible to position soakaways in keeping with the recommended spacings from buildings and roads.

As such disposal of surface water by infiltration methods was not considered a viable option for the scheme, although will be subject to ground investigation and in situ testing.

2.4 Discharge To Watercourse

There is not a watercourse adjacent to the site and subsequently a connection will not be achievable without crossing 3rd party land. We are therefore of the opinion that the only realistic means to drain the site is to maintain the existing connections (subject to condition) to the public surface water sewer network.

2.5 Surface Water Calculations

As the existing site is currently believed to utilise gravity sewers to dispose of surface water, we have developed the proposed drainage strategy on the assumption it will be acceptable for the site to continue to use this outlet.

As requested by the planning authority we have looked to reduce the site to greenfield run-off, however, working on 5 l/s/ha =

 $Q = 0.167 \times 5 = 0.835 \text{ l/s}$

As 2 l/s is generally considered an acceptable / practicable minimum figure to work to, we have therefore taken this as the proposed discharge rate for the site.

Therefore, the proposed surface water run-off generated by the development is to be attenuated onsite in a cellular structure, prior to a controlled discharge of 2 l/s into the existing public surface water sewer network. The cellular structure should be designed to provide attenuation for up to and including a 1 in 100 year storm event plus a 40% allowance for climatic change - it is anticipated that the structure would be required to provide a capacity of circa 55m³, but this will be subject to detailed design based on site specific investigations and testing.

2.6 Sustainable Drainage

It is proposed that the car park will utilise permeable paving design to manage the water generated at source. The installation of permeable paving will also act as filters, removing many pollutants through collection and biodegradation before returning cleansed water to the natural environment - runoff from the roofs is considered to be a low risk in terms of pollution control, however due to the nature of the development (comprising predominantly conversion of existing building with an extension) it has not been possible to consider other measures such as green roofs or greywater systems. Providing Water butts to encourage an element of re-use is all not viable in an apartment development.

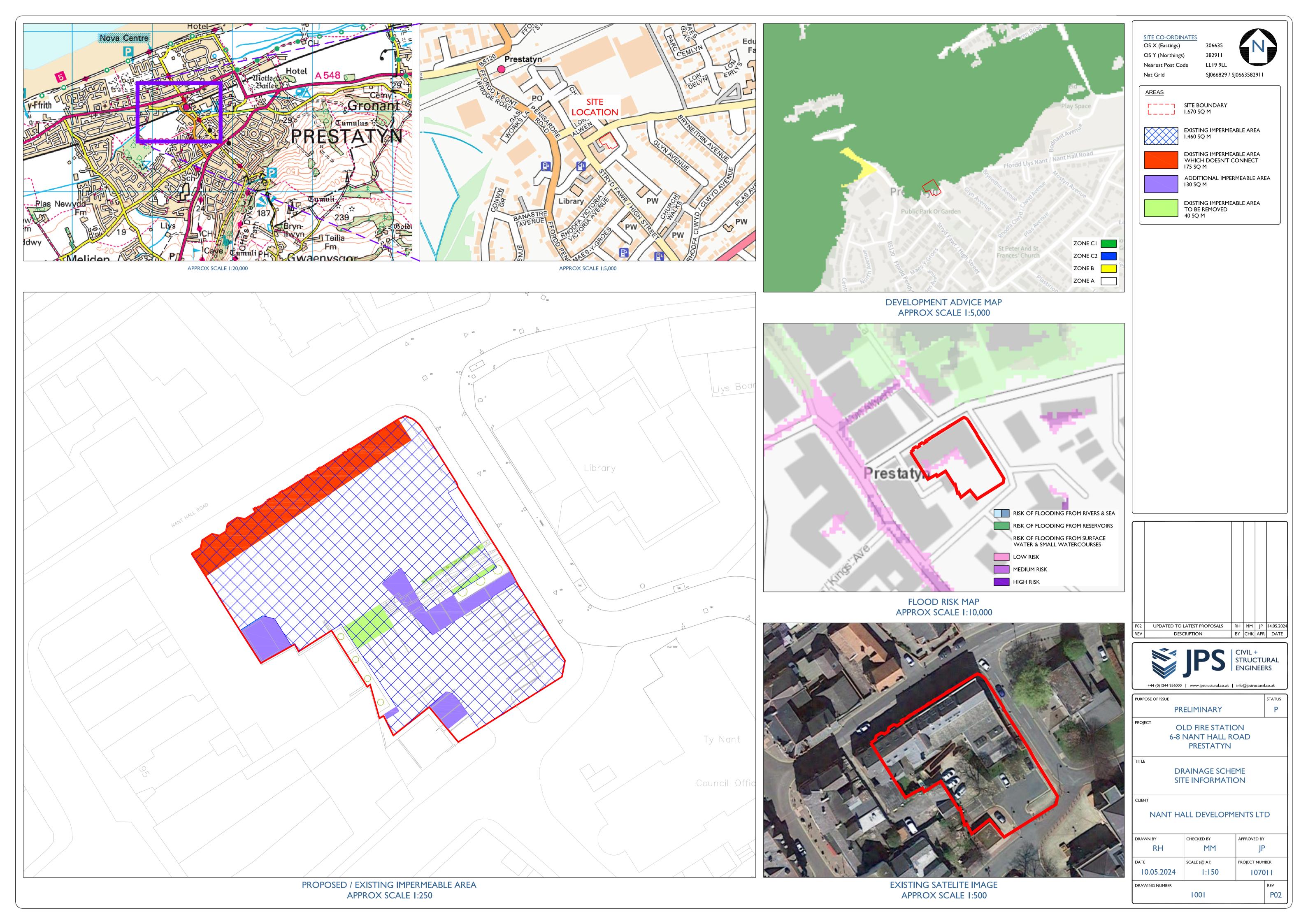
2.7 O&M Manual

During the final design & construction stage, full details will be submitted and included in the O&M manuals to ensure the drainage system is regularly maintained with particular regards to the surface water system. This will include manufacturer's guidelines for maintenance and replacement as well as full details of the flow control device and means to operate the drain down features in a blockage situation. A draft copy is contained within Appendix G.

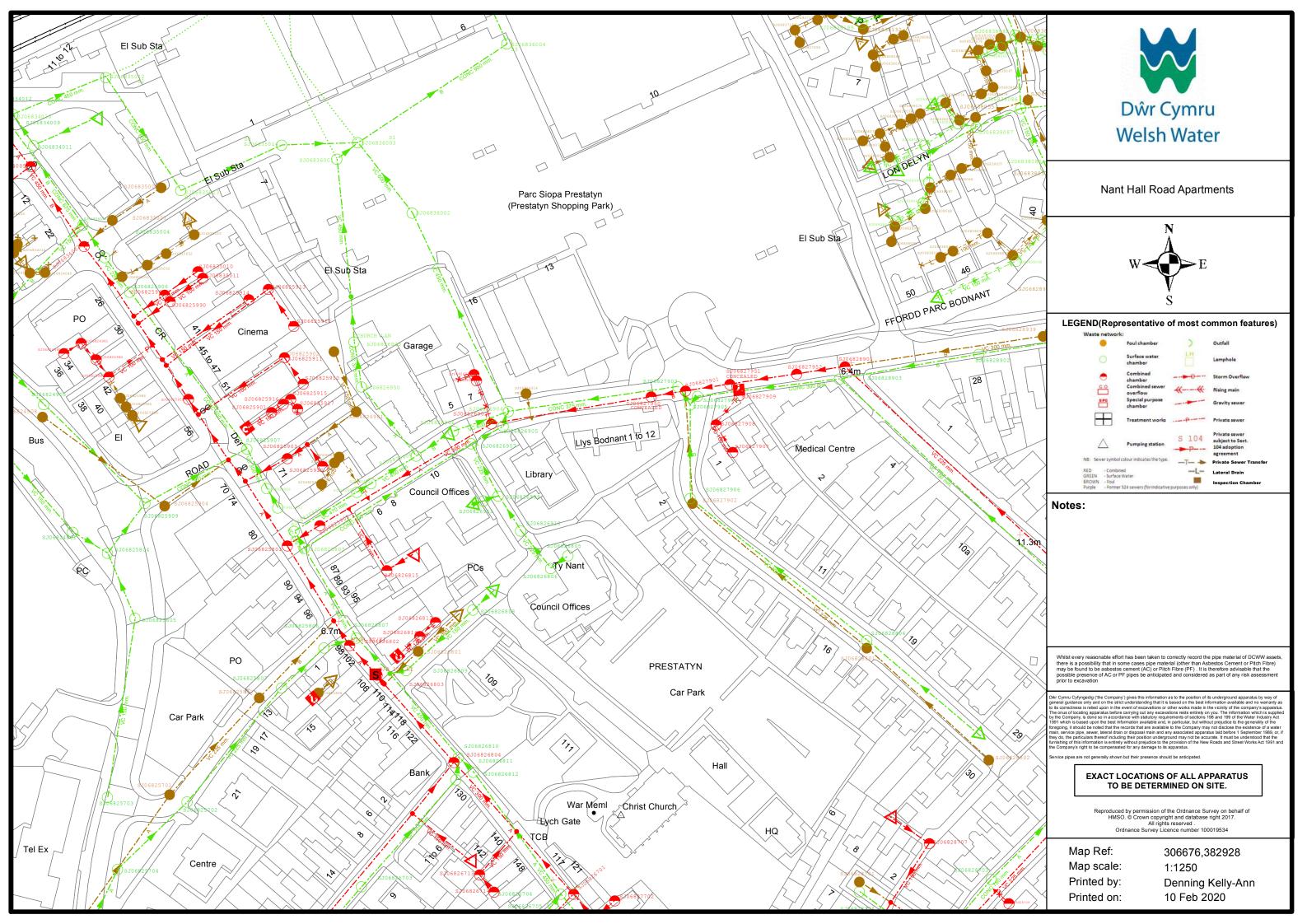
3 Conclusions

3.1 Conclusions

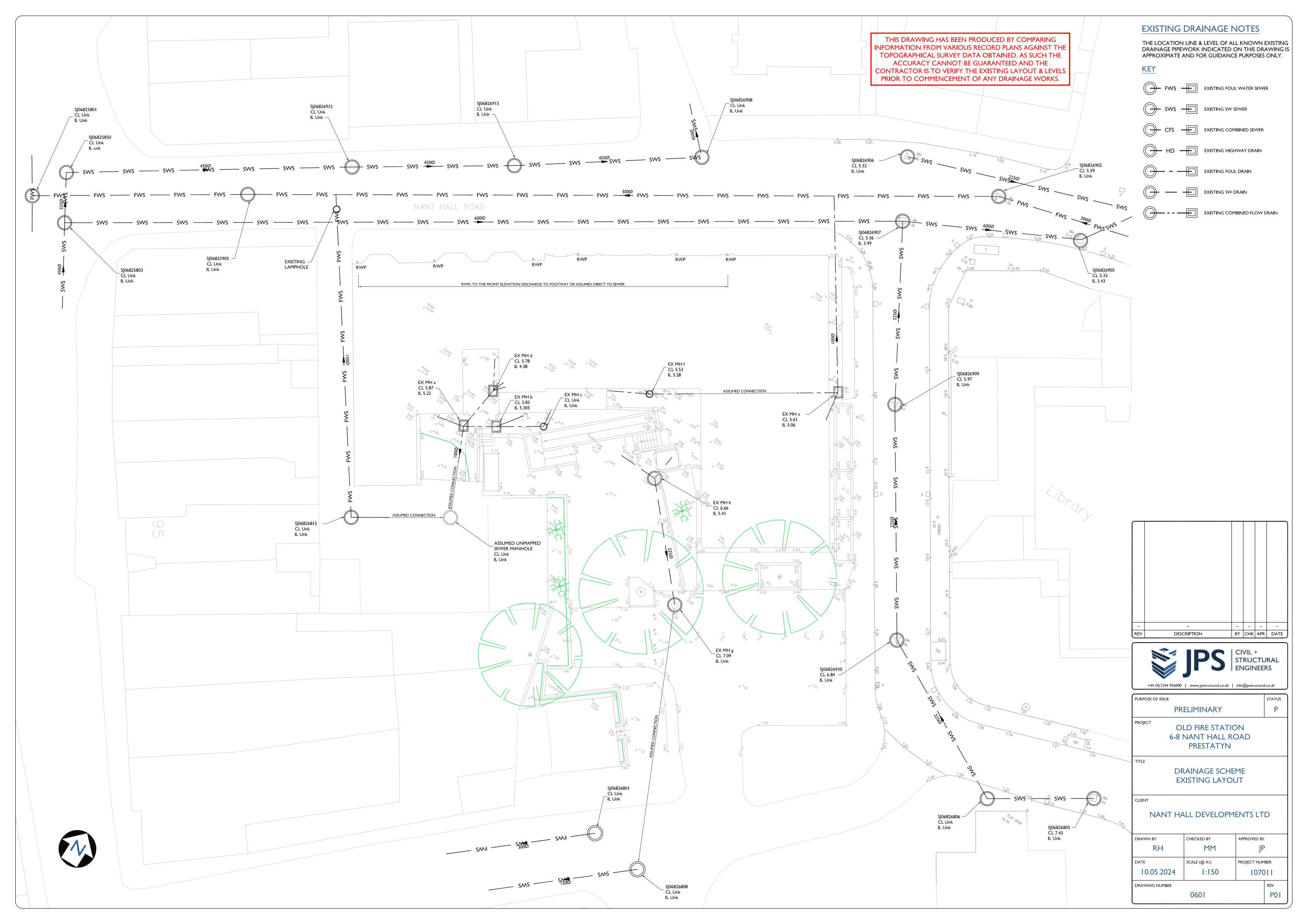
The proposed site is at an acceptable level of flood risk and there are suitable points of connection for the disposal of the foul and surface water run-off generated by the proposed development.


We would expect the proposed development to be free from general objections in respect to draining the site but anticipate that the use of infiltration techniques will not be possible. There will also be suitable conditions imposed to ensure that the drainage proposals are designed and constructed in accordance with relevant statutory requirements.

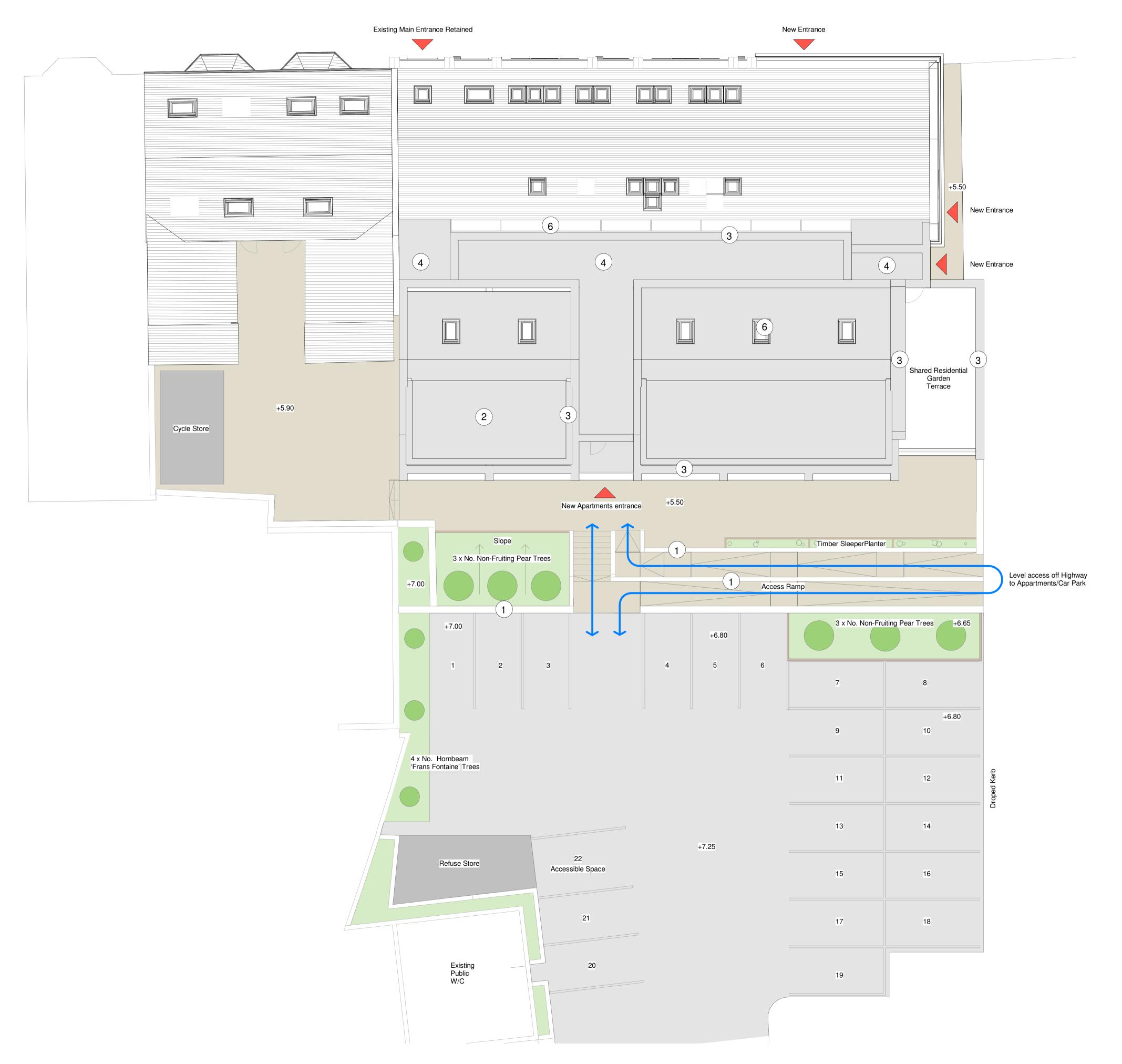
4 Appendices



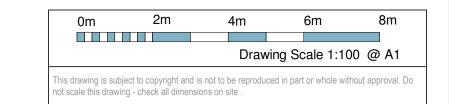
Appendix A – Site Information Drawing



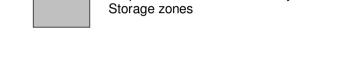
Appendix B – Public Sewer Records

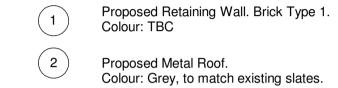


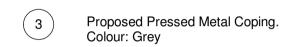
Appendix C – Existing Drainage Layout

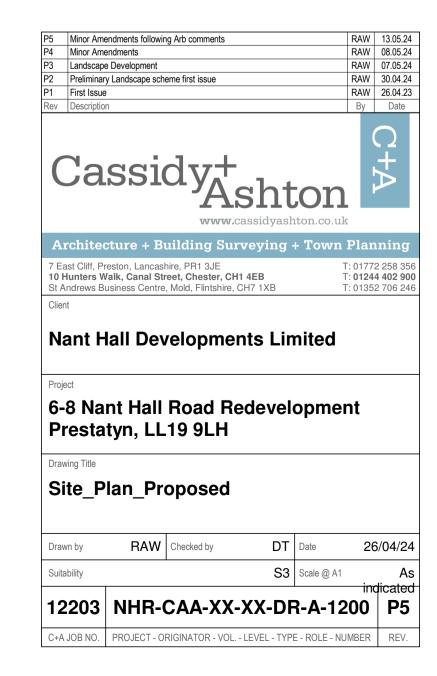


Appendix D – Site Proposals

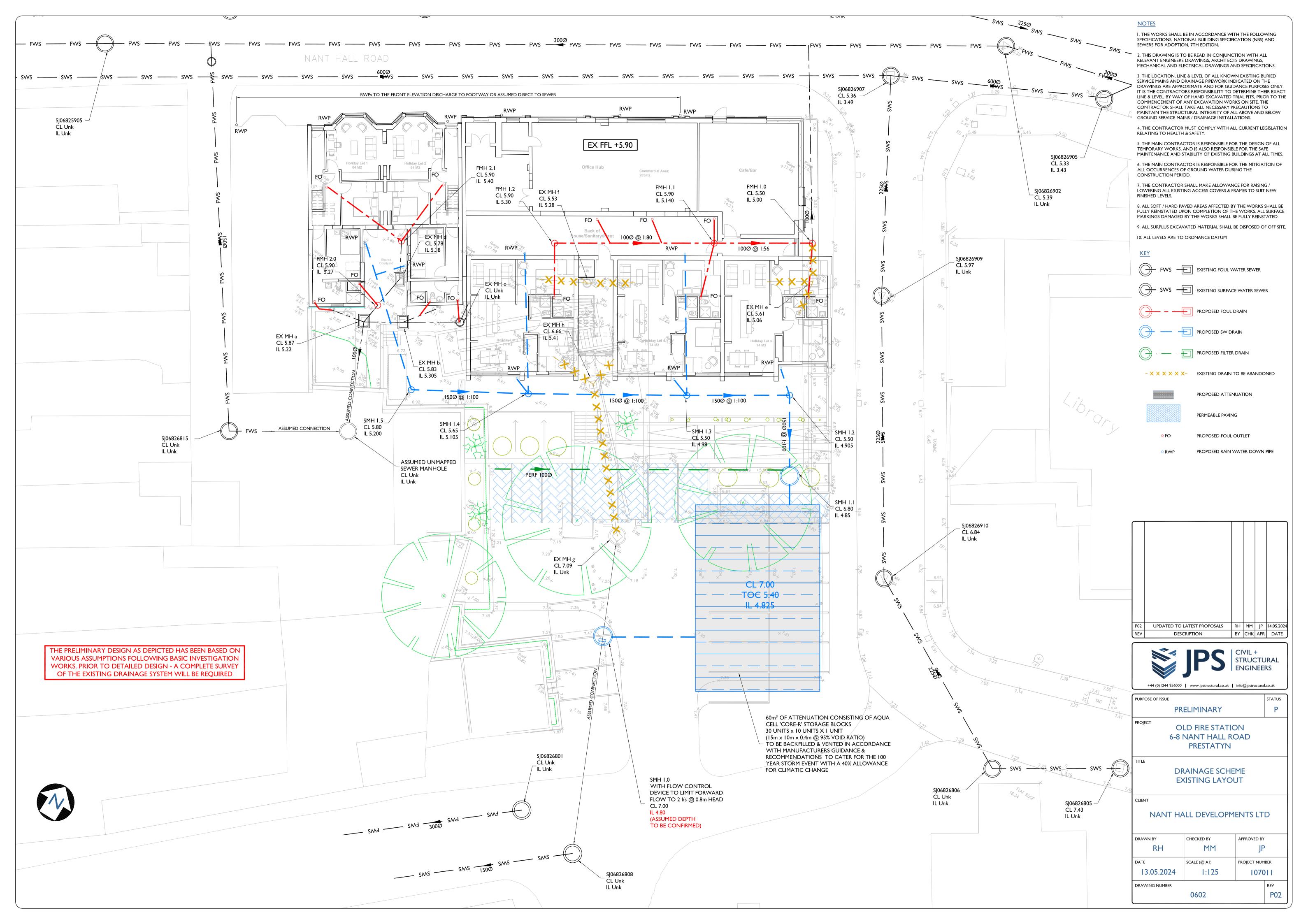


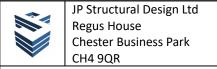



Hard/Soft Landscaping Finishes



Proposed residential Refuse/Cycle





Appendix E – Preliminary Drainage Drawings

Appendix F – Surface Water Calculations

File: Prestatyn OFS.pfd Network: Storm Network Russell Hardy May 2024 Page 1 Old Fire Station Prestatyn Attenuation Calculations

Design Settings

Rainfall Methodology Maximum Time of Concentration (mins) 30.00 FSR Return Period (years) 100 Maximum Rainfall (mm/hr) 50.0 Additional Flow (%) 40 Minimum Velocity (m/s) 1.00 FSR Region England and Wales Connection Type Level Soffits M5-60 (mm) 17.000 Minimum Backdrop Height (m) 0.200 Ratio-R 0.400 Preferred Cover Depth (m) 1.200 CV 0.750 Include Intermediate Ground ✓ Time of Entry (mins) 4.00 Enforce best practice design rules ✓

Nodes

Name	Area (ha)		Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
Depth/Area 1	0.138	4.00	7.050		29.883	66.917	1.350
1			7.100	1200	29.913	62.489	1.638
2			7.200	1200	29.925	57.389	1.845

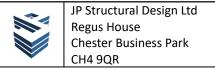
Links

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.000	Depth/Area 1	1	4.428	0.600	5.700	5.537	0.163	27.2	150	4.04	50.0
1.001	1	2	5.100	0.600	5.462	5.355	0.107	47.7	225	4.08	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.939	34.3	26.2	1.200	1.413	0.138	0.0	98	2.130
1.001	1.899	75.5	26.2	1.413	1.620	0.138	0.0	91	1.728

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.000	4.428	27.2	150	Circular	7.050	5.700	1.200	7.100	5.537	1.413
1.001	5.100	47.7	225	Circular	7.100	5.462	1.413	7.200	5.355	1.620


Link	US	Dia	Node	MH	DS	Dia	Node	MH	
	Node	(mm)	Type	Type	Node	(mm)	Type	Туре	
1.000	Depth/Area 1		Junction		1	1200	Manhole	Adoptable	
1.001	1	1200	Manhole	Adoptable	2	1200	Manhole	Adoptable	

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	X
M5-60 (mm)	17.000	Drain Down Time (mins)	240
Ratio-R	0.400	Additional Storage (m³/ha)	20.0
Summer CV	0.750	Check Discharge Rate(s)	Х
Winter CV	0.840	Check Discharge Volume	Х

Storm Durations

15	60	180	360	600	960	2160	4320	7200	10080
30	120	240	480	720	1440	2880	5760	8640	

File: Prestatyn OFS.pfd Network: Storm Network Russell Hardy

May 2024

Page 2 Old Fire Station Prestatyn Attenuation Calculations

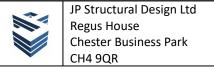
Return Period	Climate Change	Additional Area	Additional Flow
(years)	(CC %)	(A %)	(Q %)
100	40	0	0

Node 1 Online Hydro-Brake® Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Downstream Link	1.001	Sump Available	\checkmark
Replaces Downstream Link	\checkmark	Product Number	CTL-SHE-0067-2000-1000-2000
Invert Level (m)	5.462	Min Outlet Diameter (m)	0.100
Design Depth (m)	1.000	Min Node Diameter (mm)	1200
Design Flow (I/s)	2.0		

Node Depth/Area 1 Depth/Area Storage Structure

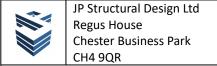
Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	5.700
Side Inf Coefficient (m/hr)	0.00000	Porosity	0.95	Time to half empty (mins)	


Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	150.0	0.0	0.400	150.0	0.0	0.401	0.0	0.0

Other (defaults)

Entry Loss (manhole)	0.250	Entry Loss (junction)	0.000	Apply Recommended Losses	X
Exit Loss (manhole)	0.250	Exit Loss (junction)	0.000	Flood Risk (m)	0.300

Rainfall


Event	Peak	Average
	Intensity	Intensity
	(mm/hr)	(mm/hr)
100 year +40% CC 15 minute summer	408.473	115.584
100 year +40% CC 15 minute winter	286.647	115.584
100 year +40% CC 30 minute summer	268.775	76.054
100 year +40% CC 30 minute winter	188.614	76.054
100 year +40% CC 60 minute summer	180.954	47.821
100 year +40% CC 60 minute winter	120.222	47.821
100 year +40% CC 120 minute summer	110.370	29.168
100 year +40% CC 120 minute winter	73.327	29.168
100 year +40% CC 180 minute summer	83.953	21.604
100 year +40% CC 180 minute winter	54.572	21.604
100 year +40% CC 240 minute summer	65.765	17.380
100 year +40% CC 240 minute winter	43.693	17.380
100 year +40% CC 360 minute summer	49.370	12.705
100 year +40% CC 360 minute winter	32.092	12.705
100 year +40% CC 480 minute summer	38.291	10.119
100 year +40% CC 480 minute winter	25.439	10.119
100 year +40% CC 600 minute summer	30.992	8.477
100 year +40% CC 600 minute winter	21.176	8.477
100 year +40% CC 720 minute summer	27.387	7.340
100 year +40% CC 720 minute winter	18.406	7.340
100 year +40% CC 960 minute summer	22.191	5.844
100 year +40% CC 960 minute winter	14.700	5.844
100 year +40% CC 1440 minute summer	15.789	4.232
100 year +40% CC 1440 minute winter	10.611	4.232
100 year +40% CC 2160 minute summer	11.070	3.059

File: Prestatyn OFS.pfd Network: Storm Network Russell Hardy May 2024 Page 3 Old Fire Station Prestatyn Attenuation Calculations

Rainfall

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year +40% CC 2160 minute winter	7.628	3.059
100 year +40% CC 2880 minute summer	9.060	2.428
100 year +40% CC 2880 minute winter	6.089	2.428
100 year +40% CC 4320 minute summer	6.697	1.751
100 year +40% CC 4320 minute winter	4.410	1.751
100 year +40% CC 5760 minute summer	5.418	1.387
100 year +40% CC 5760 minute winter	3.507	1.387
100 year +40% CC 7200 minute summer	4.536	1.157
100 year +40% CC 7200 minute winter	2.928	1.157
100 year +40% CC 8640 minute summer	3.910	0.998
100 year +40% CC 8640 minute winter	2.524	0.998
100 year +40% CC 10080 minute summer	3.448	0.880
100 year +40% CC 10080 minute winter	2.226	0.880

File: Prestatyn OFS.pfd Network: Storm Network Russell Hardy May 2024 Page 4 Old Fire Station Prestatyn Attenuation Calculations

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
180 minute winter	Depth/Area 1	176	6.098	0.398	17.6	57.5874	0.0000	SURCHARGED
180 minute winter	1	176	6.098	0.636	8.4	0.7192	0.0000	SURCHARGED
15 minute summer	2	1	5.355	0.000	2.0	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
180 minute winter	Depth/Area 1	1.000	1	8.4	1.001	0.247	0.0780	
180 minute winter	1	Hvdro-Brake®	2	2.0				41 4

Appendix G – O&M Manual

Prestatyn

OLD FIRE STATION

Maintenance Plan

107011-RP-D-0002

Rev: P01 May 2024

Table I: SuDS Maintenance Inspection Checklist

GENERAL INFORMATION								
Site ID	Former Fire Station,	Former Fire Station,						
Site Location and co-ordinates (GIS if appropriate)	Nant Hall Road, Prestatyn, LL19 9LL (30	06635, 382911)						
Elements forming the SuDS scheme	Permeable Paving / Attenuation	Approved Drawing Reference(s)	-					
Inspection frequency	Annual	Approved Specification Reference	-					
Type of development	Residential / commercial	Specific purpose of any parts of the scheme (e.g. biodiversity, wildlife and visual aspects)	-					
Agreements Restrictions								
Discharge Type	Connection	Outflow	Agreement					
Surface Water	To Public Sewer	2 l/s	\$106					
Foul	To Public Sewer	4 L/s	S106					

	Inspection date				Inspection date			
	Details	Y/N	Action required	Date Completed	Details	Y/N	Action required	Date Completed
GENERAL INSPECTION ITEMS								
Is there any evidence of erosion, channelling, ponding (where not desirable) or other poor hydraulic performance?								
Is there any evidence of accidental spillages, oils, poor water quality, odours, nuisance insects?								
Have any health and safety risks been identified to either the public or maintenance operatives?								
Is there any deterioration in the surface of permeable or porous surfaces (e.g. rutting, spreading of blocks or signs of ponding water)?								

	Inspection date				Inspection date			
	Details	Y/N	Action required	Date Completed	Details	Y/N	Action required	Date Completed
SILT/SEDIMENT ACCUMULATION								
Does permeable or porous surfacing require sweeping to remove silt?								
SYSTEM BLOCKAGES / LITTER BUILD UP								
Is there evidence of litter accumulation in the system?								
If yes, is this a blockage risk?								
Is there any evidence of any other clogging/blockage of outlets or drainage paths?								
INFRASTRUCTURE								
Is there any evidence of cross connections or other unauthorised inflows?								
Is there any evidence of tampering with the flow controls?								
Is there any evidence of tampering with the Attenuation Tanks?								
Are Attenuation tank vents clear?								
Are gullies/channels/kerb drainage clear of debris/detritus?								
Are Rainwater Down Pipes and gutters clear of debris /detritus?								
Drainage network to be checked CCTV survey.								
A list of defects should be compiled with high, medium and low risk of failure. High risk defects should be fixed immediately, medium risk should be fixed within 6 months and low risk to be monitored.								

	1		1	I	I
Are there any other matters that could affect the performance of the system in relation to the design objectives for hydraulic, water quality, biodiversity and visual aspects? (Specify.)					
OTHER OBSERVATIONS					
Information appended (e.g. photos)					

	Inspection date				Inspection date			
	Details	Y/N	Action required	Date Completed	Details	Y/N	Action required	Date Completed
SUITABILITY OF CURRENT MAINTENANCE REGIME								
Continue as current								
Increase maintenance								
Decrease maintenance								
NEXT INSPECTION								
Proposed date for next inspection								

Additional Notes	