## CHESTER WOOL FACTORY

# Sandycroft Drainage Strategy Report

107014-RP-D-0001 Rev: P02 January 2025





# **Document History**

| Job Number: 107014 |                     | Document Ref: RP-D-0001 |            |            |
|--------------------|---------------------|-------------------------|------------|------------|
|                    |                     |                         |            |            |
|                    |                     |                         |            |            |
| P02                | Drainage Strategy   | SB                      | RH         | 25.02.2024 |
| P01                | Drainage Strategy   | RH                      | ММ         | 30.01.2025 |
| Revision           | Purpose Description | Originated              | Authorised | Date       |



# Contents

|     |            |                                   | Page |
|-----|------------|-----------------------------------|------|
| I   | Intro      | duction                           | 3    |
|     | 1.1        | Commission                        | 3    |
|     | 1.2        | Limitations                       | 3    |
| 2   | Existi     | ing Site and Proposed Development | 4    |
|     | 2.1        | Existing Site                     | 4    |
|     | 2.2        | Existing Drainage                 | 4    |
|     | 2.3        | Existing Flood Design             | 4    |
|     | 2.4        | Proposed Development              | 4    |
|     | 2.5        | Ground Investigation              | 4    |
| 3   | Drain      | age Strategy                      | 6    |
|     | 3.1        | Foul Drainage                     | 6    |
|     | 3.2        | Surface Water Drainage            | 6    |
|     | 3.3        | Drainage Proposals                | 6    |
|     | 3.4        | O&M Manual                        | 6    |
| 4   | Conc       | lusions                           | 7    |
|     | 4.I        | Conclusions                       | 7    |
| 5   | Арре       | ndices                            | 8    |
| Арр | endix A -  | - Site Plans                      | 9    |
| Арр | endix B -  | - Site Information Drawing        | 10   |
| Арр | endix C -  | - Existing Drainage               | П    |
| Арр | endix D -  | - CCTV Survey                     | 12   |
| Арр | endix E -  | - GI Extract                      | 13   |
| Арр | endix F -  | SAB Application Form              | 14   |
| Арр | endix G -  | - Proposed Drainage Layout        | 15   |
| Арр | endix H ·  | - Qbar Calculations               | 16   |
| Арр | endix I– S | Surface Water Calculations        | 17   |
| Арр | endix J –  | Schematic Layout                  | 18   |
| Арр | endix K -  | - O&M Manual                      | 19   |



# 1 Introduction

## 1.1 **Commission**

Cassidy & Ashton appointed JP Structural Design (JPS) on behalf of the Chester Wool Factory to undertake this Drainage Strategy Report in support of a Planning Application for the construction of a new warehouse facility off Factory Road, Sandycroft.

## 1.2 Limitations

The copyright in this document (including its electronic form) shall remain vested in JP Structural Design Limited but the Client shall have a licence to copy and use the document for the purpose for which it was provided. JP Structural Design shall not be liable for the use by any person of the document for any purpose other than that for which the same was provided by JP Structural Design. This document shall not be reproduced in whole or in part or relied upon by third parties for any use whatsoever without the express written authority of JP Structural Design.

The findings of this Strategy have been based on data available at the time of the study and on the review of available information that has been undertaken to date. They relate to the current development proposals as outlined in **Appendix A**. Should the proposed end use of the site change after the completion of this assessment, then the findings of this report will need to be reviewed and updated accordingly.



# 2 Existing Site and Proposed Development

## 2.1 Existing Site

The site covers an area northeast of Factory Road comprising derelict and previously demolished industrial units. The site covers an area of approximately  $8,345m^2$  as shown on the site information drawing in **Appendix B**.

The site is roughly rectangular in shape and relatively flat.

## 2.2 Existing Drainage

The sewer records for the site have been obtained (an extract is shown the information drawing in **Appendix B**), which suggested a transferred sewer crosses the site to a pump station within the adjacent site to the west. Further to this on-site investigations have been attempted although found the system to be in a poor condition following previously undertaken demolition works. A lot of the drainage network was found to be surcharged although it has not been able to determine whether this is due to blockages in the system or due to the pump station not clearing the network fully. Further to this, a GPR survey has been undertaken.

We have therefore produced an Existing Drainage Plan shown in **Appendix C** by interpolating between the various pieces of information available. Extracts from the CCTV survey are included in **Appendix D** although all information will require verification on site.

# 2.3 Existing Flood Design

In accordance with the NRW Developers Advice Maps (shown in **Appendix B**), the site is located within Flood Zone C1 – described as "areas of the floodplain which are developed and served by significant infrastructure, including flood defences"

Subsequently a separate Flood Consequence Assessment has been prepared by Tier Consult which ultimately concluded that the site should be expected to remain dry in all but the most extreme conditions although recommendations were included predominantly concerning the minimum level the building should be constructed to as 6.55m.

## 2.4 **Proposed Development**

The proposed development is for a new warehouse to store products and materials for the Chester Wool Company with workshop and office areas, service delivery yard with dock levellers and car parking facilities.

## 2.5 **Ground Investigation**

It is necessary to identify the most appropriate method of controlling and discharging surface water. The design should seek to improve the local run-off profile by using systems that can either attenuate run-off and reduce peak flow rates or positively impact on the existing flood profile. As evidence to the most suitable method of discharging surface water, an extract from the site investigation / Geo-Environmental report prepared for the site is by Tier is included within **Appendix E**. As shown it Chester Wool Company Drainage Strategy



was found that the site is underlain by brown silty sands with shallow groundwater which was encountered at depths of 1.2-1.7m

It is therefore anticipated that infiltration methods will not be a viable solution for the site.



# 3 Drainage Strategy

## 3.1 Existing Sewer

It is proposed to seek a diversion agreement to amended the existing sewer crossing the site to ensure it is clear of the new building line etc, this will need to in accordance with a Section 185 agreement with Welsh Water.

## 3.2 Foul Drainage

The foul drainage peak discharge will increase slightly following completion of the scheme with the creation of additional office space and welfare facilities; however this is still anticipated of being less than 1.0 l/s additional peak flow.

For the foul design proposals, we would therefore advocate a new separate foul drainage system is designed to serve the proposed development and connected to the existing foul network serving the estate.

## 3.3 Surface Water Drainage

In accordance with the Welsh Assembly Government's implementation of Schedule 3, the Surface Water Drainage strategy adheres to the principles of;

- Reducing Flood Risk
- Improving Water Quality
- Protecting and Improving the Environment
- Ensuring the Stability & Durability of Drainage Systems

The site will be subject to a SAB application and the completed Application Advice is contained in **Appendix F**.

## 3.4 Drainage Proposals

A preliminary drainage proposal drawing is contained in **Appendix G**, the calculated Qbar for the site is contained in **Appendix H**. Surface Water calculations are contained in **Appendix I** with a schematic layout contained in **Appendix J**.

### 3.5 **O&M Manual**

During the detail design stage & construction, full details of the final design will be submitted and included in the O&M manuals to ensure the drainage system is regularly maintained with particular regards to the surface water system. This will include manufacturer's guidelines for maintenance and replacement and full details of the flow control device as well as means to operate the drain down features in a blockage situation. A draft copy is contained within **Appendix K**.



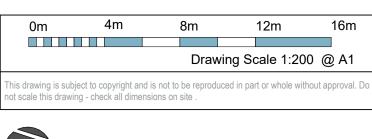
# 4 **Conclusions**

## 4.1 **Conclusions**

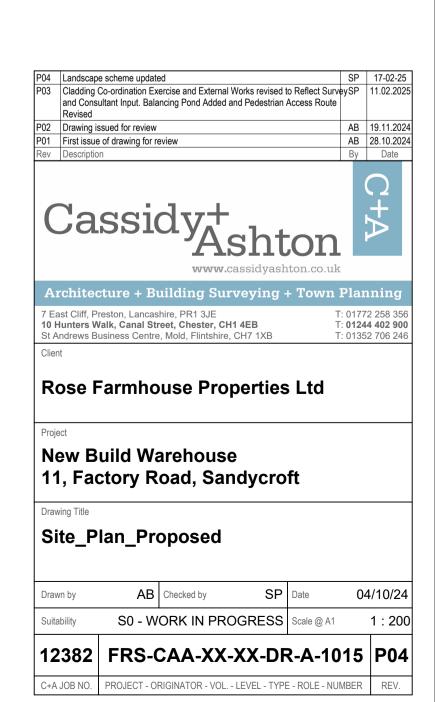
The proposed site has suitable points of connection for the disposal of the foul and surface water runoff generated by the proposed development. Whilst it is within a Flood Risk zone as concluded within the FCA it is considered that measures can taken to appropriately mitigate the risk.

We would expect the proposed development to be free from general objections in respect to draining the site but anticipate that the use of infiltration techniques will not be possible. There will also be suitable conditions imposed to ensure that the drainage proposals are designed and constructed in accordance with relevant statutory requirements. Chester Wool Company Drainage Strategy



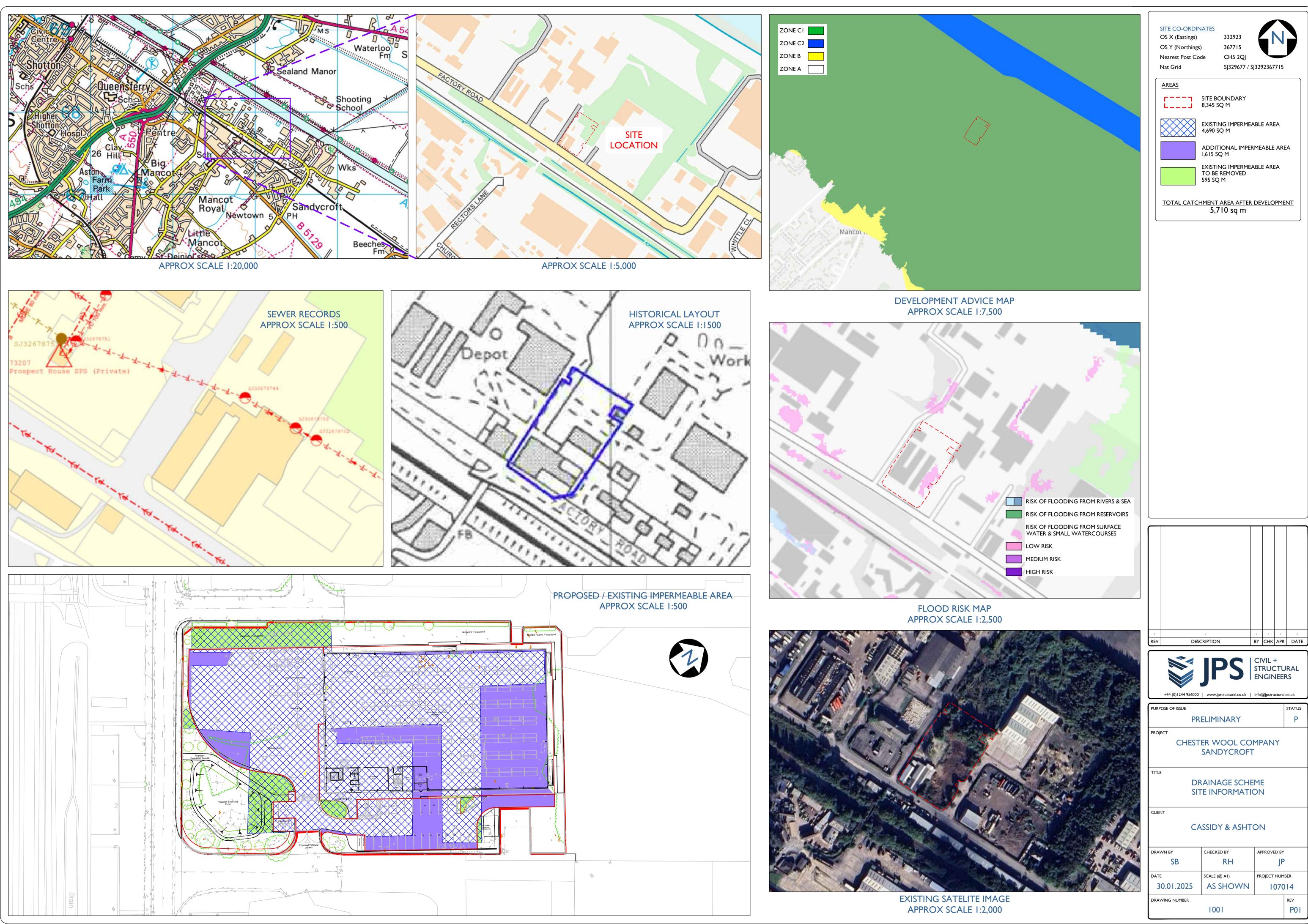

# 5 Appendices

Chester Wool Company Drainage Strategy




# Appendix A – Site Plans













# **Appendix B – Site Information Drawing**



| SITE CO-ORDI    | NATES               |                             |              |
|-----------------|---------------------|-----------------------------|--------------|
| OS X (Eastings) |                     | 332923                      |              |
| OS Y (Northing  | s)                  | 367715                      |              |
| Nearest Post Co | ode                 | CH5 2QJ                     |              |
| Nat Grid        |                     | SJ329677 / S                | iJ3292367715 |
| AREAS           |                     |                             |              |
| []]]            | SITE BC<br>8,345 SC | OUNDARY<br>Q M              |              |
|                 | EXISTIN<br>4,690 SC | ig imperme/<br>Q M          | ABLE AREA    |
|                 | ADDITI<br>1,615 SC  |                             | RMEABLE AREA |
|                 |                     | ig imperme/<br>Removed<br>M | ABLE AREA    |
| TOTAL CATC      |                     | AREA AFTER                  | DEVELOPMENT  |



# Appendix C – Existing Drainage





# Appendix D – CCTV Survey





### Project

| Project Name:        | 15463 Survey Ops Sandycroft               |
|----------------------|-------------------------------------------|
| Project Description: | CCTV Drainage Inspection Report           |
| Project Number:      | 15463                                     |
| Project Date:        | 19/11/2024                                |
| Inspection Standard: | MSCC5 Sewers & Drainage GB (SRM5 Scoring) |

Underground Surveys ( UK ) Ltd Unit CG17 & 18 Warrington Business Park, Long Lane Tel. 01925 444 664 info@undergroundsurveys.co.uk

#### **Scoring Summary**

Project Name 15463 Survey Ops Sandycroft Project Number 15463 Project Date 19/11/2024

#### **Structural Defects**

Surveys

Underground

- Grade 3: Best practice suggests consideration should be given to repairs in the medium term.
- Grade 4: Best practice suggests consideration should be given to repairs to avoid a potential collapse.
- Grade 5: Best practice suggests that this pipe is at risk of collapse at any time. Urgent consideration should be given to repairs to avoid total failure.

| Section | PLR      | Grade | Description                                         |
|---------|----------|-------|-----------------------------------------------------|
| 2       | Pipe01AX | 4     | Hole in drain or sewer from 12 o'clock to 2 o'clock |
| 4       | MH05X    | 4     | Broken pipe at joint from 11 o'clock to 4 o'clock   |

#### **Service / Operational Condition**

- Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.
- Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.
- Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

| Section | PLR      | Grade | Description                                                   |
|---------|----------|-------|---------------------------------------------------------------|
| 1       | MH01X    | 4     | Settled deposits, fine, 60% cross-sectional area loss         |
| 2       | Pipe01AX | 4     | Settled deposits, fine, 45% cross-sectional area loss, finish |
| 4       | MH05X    | 4     | Multiple defects                                              |
| 6       | MH06X    | 5     | Roots, mass, 45% cross-sectional area loss                    |
| 8       | Pipe05BX | 4     | Settled deposits, fine, 60% cross-sectional area loss         |
| 12      | Pipe06DX | 4     | Settled deposits, fine, 50% cross-sectional area loss         |
| 15      | Pipe08AX | 4     | Settled deposits, fine, 25% cross-sectional area loss, finish |

#### **Abandoned Surveys**

| Section | PLR      | Description      |
|---------|----------|------------------|
| 1       | MH01X    | Survey abandoned |
| 2       | Pipe01AX | Survey abandoned |
| 3       | MH03X    | Survey abandoned |
| 4       | MH05X    | Survey abandoned |
| 4       | MH05X    | Survey abandoned |
| 6       | MH06X    | Survey abandoned |
| 8       | Pipe05BX | Survey abandoned |
| 9       | Pipe06AX | Survey abandoned |
| 10      | Pipe06BX | Survey abandoned |
| 11      | Pipe06CX | Survey abandoned |
| 12      | Pipe06DX | Survey abandoned |
| 13      | Pipe06EX | Survey abandoned |

Underground Surveys ( UK ) Ltd Unit CG17 & 18 Warrington Business Park, Long Lane Tel. 01925 444 664

info@undergroundsurveys.co.uk

### **Scoring Summary**

| 15463 | 19/11/2024 |
|-------|------------|
| 15405 | 19/11/2024 |
| 10100 |            |
|       |            |
|       |            |
|       |            |

| 14 | MH04X    | Survey abandoned |
|----|----------|------------------|
| 15 | Pipe08AX | Survey abandoned |
| 16 | MH08X    | Survey abandoned |
| 17 | MH09X    | Survey abandoned |
| 18 | MH07X    | Survey abandoned |
| 19 | MH19X    | Survey abandoned |
| 20 | MH12X    | Survey abandoned |
| 21 | MH16X    | Survey abandoned |
| 22 | MH15X    | Survey abandoned |
| 23 | MH14X    | Survey abandoned |

### Information

Underground Surveys

These scoring summaries are based on the SRM grading from the WRc.

Area dense overgrowth cut back large amounts of ground covered over unable to fine any drainage chambers

MH014 SC

MH015

MH01

MH0<sup>·</sup> WM

Locked gates keys required for jetvac access

MH019 WW SC

MH020 WW SC MH07

MH04 SC

МН03

Area fenced off unable to gain access

Pipe 06A Pipe 06B

Pipe 06D

> Area fenced off unable to gain access

MH012 SC

> MH010 O GY

> > Pipe 03A

GY MH09 SC

> MH01 Q Pipe 01A

O MH011 WM

ACO

MH08 SC

> MH02 UTL

> > MH018 WM O

Manhole Chamber Depths: MH01= 0.51mtrs MH02 = UTL MH03 = 0.65mtrs MH04 = Surcharged MH05 = 0.48mtrs MH06 = 1.17mtrs MH07 = UTR MH08 = Surcharged MH010 = Full of debris MH011 = Water main MH012 = Surcharged MH013 = Surcharged MH014 = Surcharged MH015 = Surcharged MH015 = Surcharged MH016 = Surcharged MH017 = Water main MH018 = Water main MH019 = Welsh water asset surcharged MH020 = Welsh water asset surcharged Chester Wool Company Drainage Strategy



# Appendix E – GI Extract



# GROUND INVESTIGATION REPORT 11 FACTORY ROAD, SANDYCROFT, DEESIDE

TE1799-TE-00-XX-RP-GE-001-V01

**VERSION 1.0** 

25 JANUARY 2024

FINAL

Prepared for:

Cassidy + Ashton

Prepared by: Henry Cox

Tier Environmental Ltd

| Warrington | London                 | Manchester               | Bromsgrove                 | Bridgwater              | Sheffield |
|------------|------------------------|--------------------------|----------------------------|-------------------------|-----------|
|            | HQ Telepho             | า <b>e</b> 01244 684900  | Telephone                  | 01925 818388            |           |
|            | Website: v             | ww.tieruk.com            | Email: environm            | nental@tieruk.com       |           |
| Tier       | Environmental is a tra | ding name of Tier Enviro | nmental Ltd. Registered in | England and Wales no 05 | 441804    |



#### GROUND INVESTIGATION REPORT 11 FACTORY ROAD, SANDYCROFT, DEESIDE

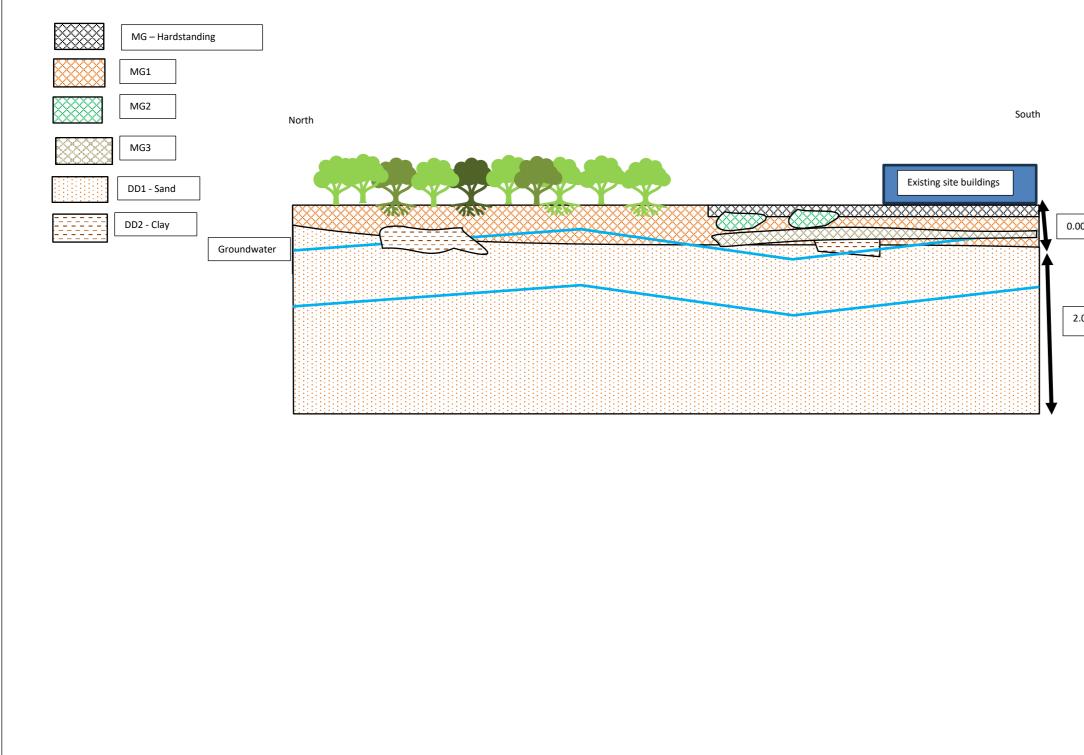
| TE1799-TE-00-XX-RP-GE-001-V01 | Report No : |
|-------------------------------|-------------|
| 30 of 75                      | Page No :   |
| Henry Cox                     | Engineer:   |
| 25/01/2024                    | Date:       |

### 7. GROUND CONDITIONS

The following section provides a summary of the ground conditions encountered during the ground investigation including strata profile, obstructions and visual / olfactory evidence of contamination. Exploratory hole logs are provided in Appendix B.

Photographs of ground investigation works are provided in Appendix G.

#### 7.1. Strata Profile


Figure 7.1 presented below provide a schematic summary of the ground conditions beneath the site. The distinct populations of strata identified have been numbered and correspond with the more detailed descriptions below.



|                                               | Report |
|-----------------------------------------------|--------|
| <b>GROUND INVESTIGATION REPORT 11 FACTORY</b> | Page I |
| ROAD, SANDYCROFT, DEESIDE                     | Engin  |

| TE1799-TE-00-XX-RP-GE-001-V01 | rt No : |  |
|-------------------------------|---------|--|
| 31 of 75                      | e No :  |  |
| Henry Cox                     | ineer:  |  |
| 25/01/2024                    | Date:   |  |
|                               |         |  |

#### Figure 7.1 Schematic Drawing of Ground Conditions



0.00 – 2.00m bgl

2.00 – 8.00m bgl



#### GROUND INVESTIGATION REPORT 11 FACTORY ROAD, SANDYCROFT, DEESIDE

| TE1799-TE-00-XX-RP-GE-001-V01 | Report No : |
|-------------------------------|-------------|
| 32 of 75                      | Page No :   |
| Henry Cox                     | Engineer:   |
| 25/01/2024                    | Date:       |

#### 7.2. Strata Descriptions

#### Made Ground – Hardstanding

| Concrete                                                                                         |                                                |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| Grey CONCRETE comprising of 45% aggregate of subangular limestone and mixed natural lithologies. |                                                |  |
| Locations encountered                                                                            | CP02a, CP02b, CP03                             |  |
| Depths encountered from top of stratum (range)                                                   | Ground level                                   |  |
| Depths encountered to base of stratum (range)                                                    | 0.15m to 0.30m bgl                             |  |
| Thickness (range)                                                                                | 0.15m to 0.30m                                 |  |
| Spatial location on site                                                                         | location on site Southwestern area of the site |  |
| Asphalt                                                                                          |                                                |  |
| Locations encountered                                                                            | WS01, WS02                                     |  |
| Depths encountered from top of stratum (range)                                                   | Ground level                                   |  |
| Depths encountered to base of stratum (range)                                                    | 0.05m to 0.10m bgl                             |  |
| Thickness (range)                                                                                | 0.05m to 0.10m                                 |  |
| Spatial location on site                                                                         | Southern areas of site                         |  |

#### Made Ground – MG1

| Locations encountered                          | CP01, CP02b, WS01 to WS05                                                                                                                 |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Depths encountered from top of stratum (range) | Ground level to 0.30m bgl                                                                                                                 |
| Depths encountered to base of stratum (range)  | 0.60m to 1.40m bgl                                                                                                                        |
| Thickness (range)                              | 0.55m to 1.20m                                                                                                                            |
| Spatial location on site                       | Widespread across the site                                                                                                                |
| General description                            | Brown/pinkish sandy clayey Gravel/ sandy Gravel/Gravel/Gravelly Clay.<br>Gravel of mudstone and limestone and occasional brick fragments. |

#### Made Ground – MG2

| Locations encountered                          | CP03, WS02                                                     |
|------------------------------------------------|----------------------------------------------------------------|
| Depths encountered from top of stratum (range) | 0.15 0.40m bgl                                                 |
| Depths encountered to base of stratum (range)  | 0.60m to 2.00m bgl                                             |
| Thickness (range)                              | 0.20m to 1.85m                                                 |
| Spatial location on site                       | Encountered in the west and south of the site only.            |
| General description                            | Black gravelly ASH. Gravel of fine to coarse, subrounded coal. |



#### GROUND INVESTIGATION REPORT 11 FACTORY ROAD, SANDYCROFT, DEESIDE

| TE1799-TE-00-XX-RP-GE-001-V01 | Report No : |
|-------------------------------|-------------|
| 33 of 75                      | Page No :   |
| Henry Cox                     | Engineer:   |
| 25/01/2024                    | Date:       |

#### MG3 - Possible MG

| Locations encountered                          | CP02b, WS02 & WS03                        |
|------------------------------------------------|-------------------------------------------|
| Depths encountered from top of stratum (range) | 0.60 to 1.40m bgl                         |
| Depths encountered to base of stratum (range)  | 1.50m to 2.00m bgl                        |
| Thickness (range)                              | 0.40m to 1.30m                            |
| Spatial location on site                       | Southwestern area of site                 |
| General description                            | Light brown, mottled grey silts and clays |

#### Drift Deposits – DD1

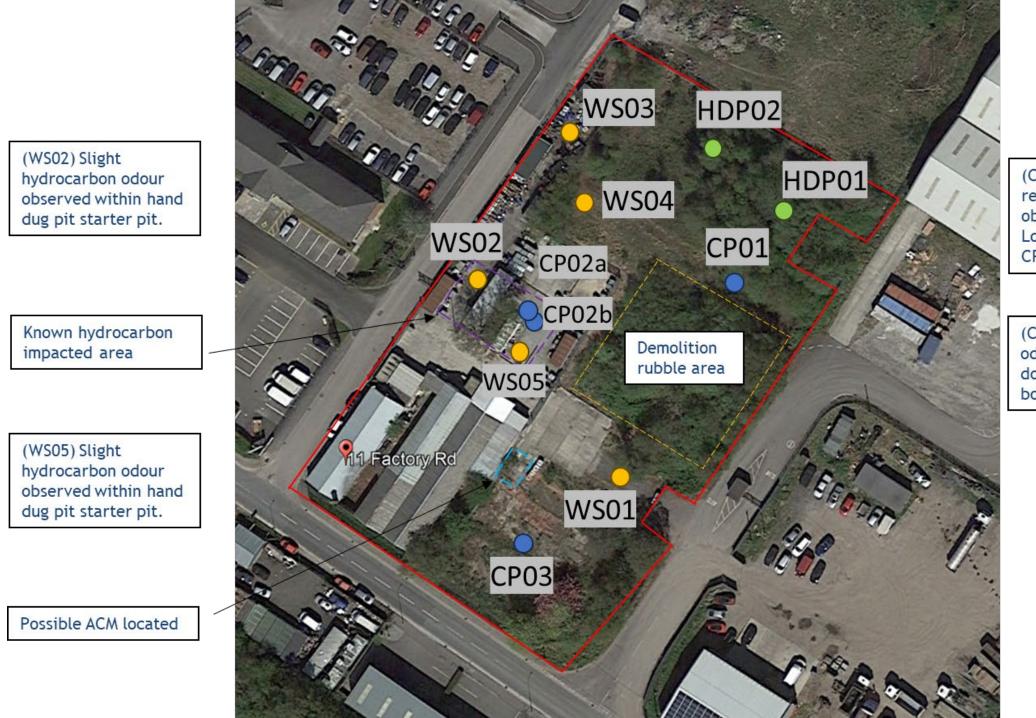
| Tidal Flat Deposits - Sands                          |                                 |  |
|------------------------------------------------------|---------------------------------|--|
| Locations encountered                                | CP01, CP02b, CP03, WS01 to WS04 |  |
| Depths encountered from top of stratum (range)       | 1.00 to 2.10m bgl               |  |
| Proven depths encountered to base of stratum (range) | 5.45m to 8.15m bgl              |  |
| Proven thickness (range)                             | 3.35m to 6.80m                  |  |
| Spatial location on site                             | Widespread across the site      |  |
| General description                                  | Grey silty/sightly silty Sand   |  |

#### **Drift Deposits – DD2**

| Tidal Flat Deposits – Sandy Clays                    |                      |
|------------------------------------------------------|----------------------|
| Locations encountered                                | WS01, HDP01 & HDP02  |
| Depths encountered from top of stratum (range)       | 0.20 to 1.25m bgl    |
| Proven depths encountered to base of stratum (range) | 1.20m to 2.10m bgl   |
| Proven thickness (range)                             | 1.20m to 2.10m       |
| Spatial location on site                             | Eastern area of site |
| General description                                  | Grey sandy Clay.     |

#### 7.3. Obstructions

The following potential structures were encountered during the ground investigation works.


#### Table 7.1 Structures Summary Table

| Exploratory<br>Hole Location | Location on Site | Depth of Base of<br>Feature (m bgl) | General description and comments                                                                                                                                           |
|------------------------------|------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CP02a                        | Southwest        | 0.30                                | Initial concrete coring of cable percussive<br>borehole terminated on suspected metal<br>structure. Perhaps in association with possible<br>underground tank in this area. |



# Sandycroft, Deeside Exploratory Hole Location Plan





CP02b.

borehole.

| ract Number: | TE1799              |
|--------------|---------------------|
| ract:        | Sandycroft, Deeside |
| t:           | Cassidy + Ashton    |

(CP02a) Concrete coring refused on suspected metal obstruction at 0.3m bgl. Location moved 1m SE to

(CP02b) Moderate hydrocarbon odour becoming slight odour down to target depth of

| Scale: NTS                                       |                 |  |
|--------------------------------------------------|-----------------|--|
| Drawn by:<br>HC                                  | Approved:<br>SL |  |
| Drawing Number:<br>TE1799-TE-00-XX-GE-DR-001-V01 |                 |  |

**APPENDIX B - EXPLORATORY HOLE LOGS** 

| Docation: [<br>lient: (<br>Well Water Da | Deeside<br>Cassidy and<br>Samples a<br>Depth (m) T<br>0.20<br>0.20<br>0.50<br>1.00<br>1.20<br>1.20<br>1.20<br>1.70 - 2.00                                                                                                             | ad, Sandycroft<br>d Ashton<br>and In Situ Testing<br>Type Results<br>D<br>ES<br>ES<br>D<br>SPTL<br>S<br>N=13 (1,1/3,3,3<br>B<br>SPTL         | Project No.<br>TE1799     | Level<br>(m) | Co-ords:<br>Level:<br>Dates:<br>Legend | -<br>04/12/2023 -<br>Stratum Description<br>MADE GROUND: Vegetation over I<br>brown, slightly silty GRAVEL. Grave<br>angular to subangular limestone (St<br>MADE GROUND<br>MADE GROUND Firm, dark brown<br>bluish grey, slightly sandy , gravelly | ight greyish<br>el is coarse,<br>ub-base)<br>, mottled                        |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| lient: C<br>Vell Vater Da                | Cassidy and<br>Samples a<br>Depth (m) T<br>0.20<br>0.20<br>0.50<br>1.00<br>1.20<br>1.20<br>1.20<br>1.70 - 2.00<br>2.20 S                                                                                                              | and In Situ Testing<br>Type Results<br>D<br>ES<br>ES<br>D<br>SPTL<br>S<br>N=13 (1,1/3,3,3)                                                   | Depth<br>(m)<br>0.40      |              | Dates:                                 | Stratum Description<br>MADE GROUND: Vegetation over I<br>brown, slightly silty GRAVEL. Grave<br>angular to subangular limestone (Si<br>MADE GROUND<br>MADE GROUND: Firm, dark brown<br>bluish grey, slightly sandy, gravelly                      | Scale<br>1:50<br>Logged By<br>HC<br>ight greyish<br>el is coarse,<br>ub-base) |
| Vell Water De                            | Samples a           Depth (m)         T           0.20         0.20           0.20         0.50           1.00         1.20           1.20         1.20           1.20         1.20           1.20         S           1.20         S | and In Situ Testing<br>Type Results<br>D<br>ES<br>ES<br>D<br>SPTL<br>S<br>N=13 (1,1/3,3,3)                                                   | (m)<br>0.40               |              |                                        | Stratum Description<br>MADE GROUND: Vegetation over I<br>brown, slightly silty GRAVEL. Grave<br>angular to subangular limestone (Si<br>MADE GROUND<br>MADE GROUND: Firm, dark brown<br>bluish grey, slightly sandy, gravelly                      | Logged By<br>HC<br>ight greyish<br>el is coarse,<br>ub-base)                  |
| Vell Strikes Da                          | Depth (m)         T           0.20         0.20           0.50         1.00           1.20         1.20           1.70 - 2.00         2.20                                                                                            | Type Results D ES ES D SPTL S N=13 (1,1/3,3,3) B                                                                                             | (m)<br>0.40               |              | Legend                                 | MADE GROUND: Vegetation over I<br>brown, slightly silty GRAVEL. Grave<br>angular to subangular limestone (SI<br>MADE GROUND<br>MADE GROUND: Firm, dark brown<br>bluish grey, slightly sandy, gravelly                                             | ight greyish<br>el is coarse,<br>ub-base)<br>, mottled                        |
|                                          | 0.20<br>0.20<br>0.50<br>1.00<br>1.20<br>1.20<br>1.70 - 2.00<br>2.20 S                                                                                                                                                                 | D<br>ES<br>ES<br>D<br>SPTL<br>S<br>N=13 (1,1/3,3,3<br>B                                                                                      | 0.40                      | (m)          |                                        | MADE GROUND: Vegetation over I<br>brown, slightly silty GRAVEL. Grave<br>angular to subangular limestone (SI<br>MADE GROUND<br>MADE GROUND: Firm, dark brown<br>bluish grey, slightly sandy, gravelly                                             | ight greyish<br>el is coarse,<br>ub-base)<br>, mottled                        |
| 7.                                       | 3.40<br>3.50 - 3.80<br>4.50<br>4.50<br>5.50<br>5.50<br>6.50<br>7.00 - 7.30                                                                                                                                                            | SPTL<br>SPTL<br>S<br>B<br>N=20 (2,3/5,4,4<br>B<br>N=20 (3,4/4,5,5<br>N=12 (2,2/3,3,3<br>SPTL<br>S<br>N=17 (2,2/3,3,4<br>B<br>N=11 (2,2/2,3,3 | 4,7) 3.50<br>5,6)<br>3,3) |              |                                        | Gravel is fine to medium mudstone,<br>and occasional brick and coal fragm<br>coarse.<br>MADE GROUND<br>Medium dense, brown, silty SAND.<br>to medium<br>Medium dense, light brown sand. S<br>medium to coarse                                     | sandstone<br>nents. Sand is<br>Sand is fine                                   |

| TIER               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                             | Bo           | reho     | ole Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Borehole No<br>CP02b<br>Sheet 1 of 1                                                                            | )<br>1                          |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| Project Name:      | me: Factory Road, Sandycroft                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | andvcrott                                                                                                                                   | Project No.<br>TE1799                       |              | Co-ords: | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hole Type<br>CP                                                                                                 |                                 |  |
| ocation:           | Deeside                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                             |              | Level:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scale<br>1:50                                                                                                   |                                 |  |
| Client:            | Cassidy ar                                                                                                                                                                                     | nd Ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ton                                                                                                                                         |                                             |              | Dates:   | 05/12/2023 - Logge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | ,                               |  |
| Well Water Strikes | -                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Situ Testing                                                                                                                              | Depth                                       | Level<br>(m) | Legend   | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                               |                                 |  |
|                    | Depth (m)<br>0.30<br>0.60<br>1.00<br>1.20<br>1.20<br>1.50<br>1.70 - 2.00<br>2.20<br>2.20<br>3.30<br>3.70 - 4.00<br>4.50<br>4.50<br>5.50<br>5.50<br>5.50<br>5.50<br>5.50<br>7.00<br>7.00 - 7.30 | Type<br>ES<br>D<br>ES<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>S<br>SPTL<br>SPTL | Results<br>N=11 (1,2/2,3,3,3)<br>N=15 (2,2/3,3,4,5)<br>N=19 (3,4/4,5,5,5)<br>N=16 (3,3/4,4,4,4)<br>N=21 (3,3/4,5,5,7)<br>N=19 (3,4/4,5,5,5) | (m)<br>0.20<br>0.40<br>1.40<br>1.80<br>3.30 |              |          | MADE GROUND: Grey CONCRET<br>of 45% aggregates of medium to co<br>subangular limestone and mixed na<br>lithologies. No rebar<br>MADE GROUND<br>MADE GROUND: Brown, slightly sa<br>GRAVEL. Gravel is fine to coarse, s<br>subrounded concrete, brick and lim<br>is coarse. Occasional cobbles and s<br>concrete.<br>MADE GROUND<br>MADE GROUND<br>MADE GROUND<br>MADE GROUND: Dark brown, sand<br>Gravel is fine to coarse concrete, br<br>limestone. Sand is coarse.<br>MADE GROUND<br>POSSIBLE MADE GROUND: Firm,<br>gravelly, slightly sandy CLAY. Grave<br>to coarse, subrounded mudstone.<br>POSSIBLE MADE GROUND<br>Medium dense, light brown, silty SA<br>fine to medium.<br>Medium dense, slightly silty SAND.<br>to medium. | andy<br>subangular to<br>estone. Sand<br>subangular<br>dy GRAVEL.<br>rick and<br>grey, slightly<br>el is medium | 1<br>2<br>3<br>4<br>5<br>6<br>7 |  |
|                    | 7.70                                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N=24 (3,4/5,5,6,8)                                                                                                                          | 8.15                                        |              |          | Ēnd of borehole at 8.15 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | 8                               |  |
|                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 9                               |  |
|                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                 |  |

|                                       | TIER             |                                                   |                                      |                                           |                     | Во           | reho        | ole Log                                                                                                                                                                                                                                                                                                 | Borehole N<br>CP03<br>Sheet 1 of                           | <b>B</b><br>f 1 |  |
|---------------------------------------|------------------|---------------------------------------------------|--------------------------------------|-------------------------------------------|---------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------|--|
| rojec                                 | t Name:          | Factory Ro                                        | oad, Sa                              |                                           | roject No.<br>E1799 |              | Co-ords:    | -                                                                                                                                                                                                                                                                                                       | Hole Typ<br>CP                                             | е               |  |
| ocatio                                | on:              | Deeside                                           |                                      |                                           |                     |              | Level:      | Sca<br>1:5                                                                                                                                                                                                                                                                                              |                                                            |                 |  |
| lient:                                |                  | Cassidy a                                         | nd Ash                               | ton                                       |                     |              | Dates:      | 05/12/2023 - Logged E<br>HC                                                                                                                                                                                                                                                                             |                                                            | 3y              |  |
| Vell                                  | Water<br>Strikes | -                                                 | 1                                    | In Situ Testing                           | Depth<br>(m)        | Level<br>(m) | Legend      | Stratum Description                                                                                                                                                                                                                                                                                     | n                                                          | Τ               |  |
|                                       |                  | Depth (m)<br>0.30<br>0.50<br>1.20<br>1.20<br>2.20 | Type<br>ES<br>D<br>SPTL<br>S<br>SPTL | Results<br>N=14 (2,2/3,3,4,4)             | 2.00                |              |             | MADE GROUND: Pinkish grey CO<br>comprising of 40-45% aggregate o<br>subangular, medium to coarse lime<br>mixed natural lithologies.<br>MADE GROUND<br>MADE GROUND: Black, gravelly A<br>medium to coarse, coal fragments<br>plasterboard<br>MADE GROUND<br>Loose, greyish brown, silty SAND.<br>medium. | f angular to<br>stone and<br>SH. Gravel is<br>and possible | 1               |  |
| · · · · · · · · · · · · · · · · · · · |                  | 2.20<br>2.50<br>2.70 - 3.00<br>3.40<br>3.40       | S<br>ES<br>B<br>SPTL<br>S            | N=5 (1,2/1,2,1,1)<br>N=6 (1,1/2,2,1,1)    |                     |              |             |                                                                                                                                                                                                                                                                                                         |                                                            | 3               |  |
|                                       |                  | 4.40<br>4.40<br>5.00 - 5.30<br>5.50<br>5.50       | SPTL<br>S<br>B<br>SPTL<br>S          | N=35 (4,4/6,7,10,12<br>N=33 (4,5/7,8,9,9) | 4.40                |              |             | Dense, greyish brown, slightly silty is fine to medium.                                                                                                                                                                                                                                                 | SAND. Sand                                                 |                 |  |
|                                       |                  | 6.50<br>6.50<br>7.00 - 7.30                       | SPTL<br>S<br>B                       | N=21 (4,5/5,5,5,6)                        | 6.50                |              |             | Medium dense, greyish brown, slig<br>SAND. Sand is fine to medium.                                                                                                                                                                                                                                      | htly silty                                                 | _               |  |
|                                       |                  | 7.70<br>7.70                                      | SPTL<br>S                            | N=23 (4,5/5,5,6,7)                        | 8.15                |              |             | End of borehole at 8.15 m                                                                                                                                                                                                                                                                               |                                                            | 1               |  |
|                                       |                  |                                                   |                                      |                                           |                     |              |             |                                                                                                                                                                                                                                                                                                         |                                                            | 1               |  |
|                                       | le percu         |                                                   |                                      | nmental purposes<br>ory evidence of con   |                     |              | ess encount | tered at 2.20m bgl. 3) Terminated                                                                                                                                                                                                                                                                       | at                                                         |                 |  |



# **Appendix F – SAB Application Form**

## I. Applicant Details

## Applicant Name and Address

| Title and Name    |          |                           |  |  |
|-------------------|----------|---------------------------|--|--|
| Company           |          | Chester Wool Company      |  |  |
| Suffix (unit/name | /number) | Unit 3                    |  |  |
| Address line I    |          | Deeside Industrial Estate |  |  |
| Address line 2    |          | Prospect Park             |  |  |
| Address line 3    |          | Parkway                   |  |  |
| Town              |          | Deeside                   |  |  |
| County            |          | Flintshire                |  |  |
| Postcode          |          | CH5 2NS                   |  |  |
|                   | Mobile   |                           |  |  |
| Phone number      | Works    |                           |  |  |
|                   | Home     |                           |  |  |
| e-mail address    |          |                           |  |  |

## Agent Name and Address

| Title and Name               |        | Russell Hardy              |  |
|------------------------------|--------|----------------------------|--|
| Company                      |        | JP Structural Design Ltd   |  |
| Suffix<br>(unit/name/number) |        | Honeycomb West             |  |
| Address line I               |        | Honeycomb                  |  |
| Address line 2               |        | Chester Business Park      |  |
| Address line 3               |        |                            |  |
| Town                         |        | Chester                    |  |
| County                       |        | Cheshire                   |  |
| Postcode                     |        | CH4 9QH                    |  |
|                              | Mobile | 07711107672                |  |
| Phone number                 | Works  |                            |  |
|                              | Home   |                            |  |
| e-mail address               |        | russell@jpstructural.co.uk |  |

#### 2. Site Details

A general description of site location supported by a plan specifying the construction area and the extent of the drainage system for which approval is sought MUST be submitted. Plans shall be at a scale of 1:2500. All plans MUST show the direction of North.

| Name of proposed development | Chester Wool Company<br>Sandycroft |
|------------------------------|------------------------------------|
| Name of proposed development | · · ·                              |

| Grid Reference (E/N)      | 332923       | 367715 |  |  |  |
|---------------------------|--------------|--------|--|--|--|
| Suffix (unit/name/number) | 11           |        |  |  |  |
| Address line I            | Factory Road |        |  |  |  |
| Address line 2            | Deeside      |        |  |  |  |
| Address line 3            |              |        |  |  |  |
| Town                      |              |        |  |  |  |
| County                    | Flintshire   |        |  |  |  |
| Postcode                  | CH5 2QJ      |        |  |  |  |

| Description of proposed<br>development                                                                                                                                              | New Warehouse with offices, workshops, car parks and service yard |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Total application site area (Ha)                                                                                                                                                    | 0.8345                                                            |  |  |  |  |
| Is the existing site currently<br>developed i.e. Brownfield or is it<br>currently undeveloped i.e.<br>Greenfield?                                                                   | Brownfield                                                        |  |  |  |  |
| Existing use                                                                                                                                                                        | Industrial                                                        |  |  |  |  |
| Proposed use                                                                                                                                                                        | Industrial                                                        |  |  |  |  |
| Does the site cross more than one SAB area?                                                                                                                                         | Yes 🗌 No 🗵                                                        |  |  |  |  |
| If "Yes", please confirm the proportionate area in each SAB below:<br>(The main contact will be the SAB that has most of the surface water<br>drainage system within its boundary.) |                                                                   |  |  |  |  |

| SAB | % of Site Area |
|-----|----------------|
|     |                |
|     |                |
|     |                |

### 3. Interest in the Land

| What interest do you have in the land? |       |      |  |  |  |  |  |
|----------------------------------------|-------|------|--|--|--|--|--|
| Owner                                  | Yes 🛛 | No 🗆 |  |  |  |  |  |
| Prospective Owner                      | Yes 🛛 | No 🗆 |  |  |  |  |  |
| Other (please provide details)         |       |      |  |  |  |  |  |

## 4. Application

| Has any prior advice<br>about this application                                                                                                | Yes |      | No | $\boxtimes$ |  |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|------|----|-------------|--|------|
| If Yes, please complete the following information about the advice you were will help the SAB to deal with this application more efficiently. |     |      |    |             |  | This |
| Officer Name                                                                                                                                  |     |      |    |             |  |      |
| Reference<br>number                                                                                                                           |     | Date |    |             |  |      |
| Details of pre-<br>application advice<br>received                                                                                             |     |      |    |             |  |      |

| Does this application relate to any other SAB application already made? | Yes | No | $\boxtimes$ |
|-------------------------------------------------------------------------|-----|----|-------------|
| If "Yes", please provide SAB Reference number                           |     |    |             |

| Is this application part of a phased<br>approach to development of the site, or<br>one of multiple applications for the<br>same site? |  | Yes | No | $\boxtimes$ |
|---------------------------------------------------------------------------------------------------------------------------------------|--|-----|----|-------------|
| lf "Yes", please<br>provide brief<br>details                                                                                          |  |     |    |             |

| Is this application one of two or more<br>applications made at the same time,<br>each setting out an alternative proposal<br>for construction of a drainage system |  | Yes | No | $\boxtimes$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----|----|-------------|
| If "Yes", please<br>provide details of<br>other applications<br>made at the same<br>time (include<br>SAB Reference<br>number if<br>available)                      |  |     |    |             |

## 5. Application Fee

It is recommended you contact the SAB directly to ensure the correct fee is paid with the application.

|                                                                                                                          |           | Area of Land<br>(Ha)       | Fraction          | Fees    |
|--------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-------------------|---------|
| Application fee                                                                                                          |           | N/A                        | N/A               | £350.00 |
| Each 0.1ha or fraction of<br>0.1ha, for first 0.5ha                                                                      | £70.00    | 0.5                        | 5                 | £350.00 |
| Each 0.1ha or fraction of<br>0.1ha, from 0.5ha up to<br>and including 1ha                                                | £50.00    | 0.4                        | 4                 | £200.00 |
| Each 0.1ha or fraction of<br>0.1ha, from 1ha up to<br>and including 5ha                                                  | £20.00    |                            |                   |         |
| Each additional 0.1ha or<br>fraction of 0.1ha above<br>5Ha.                                                              | £10.00    |                            |                   |         |
| Is the applicant a town/community council?                                                                               | ,         | If yes, application amount | fee is half the   |         |
| <u>If applicable</u> – reduction of 50% application fee due to this being an alternative proposal made at the same time. |           |                            |                   |         |
| If applicable – application approvals needed.                                                                            | fee adjus | tment due to cro           | oss-SAB area      |         |
|                                                                                                                          |           |                            | <b>Total Fees</b> | £900.00 |

### 6. Environmental Impact Assessment (EiA) Statement

| Does this application relate to a development that is the |     |             |
|-----------------------------------------------------------|-----|-------------|
| subject of an EiA application under the Town & Country    | Yes | No          |
| Planning (Environmental Impact Assessment) (Wales)        |     |             |
| Regulations 2017(1)?                                      |     | $\boxtimes$ |
|                                                           |     |             |

# 7. Compliance with Statutory National Standards for Sustainable Drainage Systems (SuDS)

All sustainable drainage systems <u>MUST</u> comply with the <u>Statutory National Standards for</u> <u>Sustainable Drainage Systems (SuDS) for Wales.</u> You are advised to refer to the detailed text in the Standards that relate to the information required below. The Standards are re-produced, in the <u>Guidance</u> to assist in completing this application form.

### Standard Principles

The Principles listed below will underpin the design of surface water management schemes to meet the Statutory National Standards. Please provide a brief summary in each of the boxes below relating to each of the bulleted Standard Principles and itemised Standards I to 6, showing how your proposed drainage scheme complies with this statutory requirement.

#### **Compliance with Standard Principles**

My proposed surface water drainage scheme will comply in the following way/s:

The proposed development is an industrial unit within a very industrial area. The ground is known to be poor for infiltration measures with a high-water level (presumed to be under tidal influence) from the River Dee approximately 200m away.

#### Prevention

It is proposed that the new car park will be a permeable paving design to assist in managing the water generated at source.

### **Good Housekeeping Measures**

The installation of permeable paving will also act as filters, removing many pollutants through collection and biodegradation before returning cleansed water to the natural environment. Runoff from the roofs is considered to be a low risk in terms of pollution controls although it is proposed to install a downstream defender within the proposals for the removal of sediment and a floatable trash and oil which may have entered the system from the concrete service yard areas.

#### Site Source Controls

The site forward flow will be controlled by a hydrobrake. As the water cannot be managed adequality on site, it will be slowly conveyed elseswhere

Relevant items of supporting information (e.g. evidence, technical documents, plans and drawings etc.), as shown in <u>Table A</u> and <u>Table B</u> of this Guidance **MUST** be listed below, and all relevant material submitted.

I. 107014-0602 – Proposed Drainage

#### Standards I to 6

#### Compliance with Standard SI - Surface water runoff destination

My proposed surface water drainage scheme will comply in the following way/s:

In determining a suitable methodology for disposal of surface water flows from this development, it is necessary to explore the technical options outlined under Standard S1 of the SNSSUDS 2018 document published by Welsh Government. This states that disposal should be made through the hierarchical approach which are, in order of preference; surface water runoff collected for use, infiltration methods, discharge to surface water body, discharge to a surface water sewer, highway sewer or another drainage system and finally discharge to a combined sewer. Each of these options are considered below.

#### **Collected for Use**

Due to primary function of the building as product storage there is very limited requirement for re-use of water.

#### Infiltration Methods

As outlined earlier in the form the ground investigation has confirmed the site to have a high water table under tidal influence, it has therefore been considered as unsuitable for infiltration methods.

#### Discharge to Surface Water Body

It is not possible to discharge to a surface water body without crossing third party land.

#### Discharge to Surface Water Sewer and Discharge to a Combined Sewer

It is proposed to maintain the sites connection to the existing combined sewer network serving the industrial estate

Relevant items of supporting information (e.g. evidence, technical documents, plans and drawings etc.), as shown in <u>Table A</u> and <u>Table B</u> of this Guidance **MUST** be listed below, and all relevant material submitted.

- I. 107014-0601 Existing Drainage
- 2. 107014-0602 Proposed Drainage
- 3. 107014-1001 Site Information
- 4. GI Report Extract

#### Compliance with Standard S2 - Surface water runoff hydraulic control

My proposed surface water drainage scheme will comply in the following way/s:

HR Wallingford online greenfield runoff rate has been utilised to confirm for a site of 0.835 ha the Qbar for the site would be 1.52 l/s and it is therefore proposed to restrict the peak discharge from the site to 2 l/s. This should be acknowledge as a significant betterment to the existing unrestricted flow which for an estimated previous impermeable area of 4690m2 would generate a peak of 65 l/s based on basic 50 mm/hr rainfall rate.

Based on the parameters of the 1 in 100 year event with a 40% allowance for climatic change, the site shows no flooding with the attenuation tank and balancing pond provide the required storage volume of 330 cubic metres.

Relevant items of supporting information (e.g. evidence, technical documents, plans and drawings etc.), as shown in <u>Table A</u> and <u>Table B</u> of this Guidance **MUST** be listed below, and all relevant material submitted.

- I. 107014-0602 Proposed Drainage
- 2. Qbar calculations
- 3. Drainage Schematic Layout
- 4. Surface Water Model calculations

## Compliance with Standard S3 – Water Quality

My proposed surface water drainage scheme will comply in the following way/s:

As stated previously, The installation of permeable paving will also act as filters, removing many pollutants through collection and biodegradation before returning cleansed water to the natural environment. Settlement will also occur in the balancing pond, ensuring that excessive sediment is removed from the forward flow The basin will feature appropriate planting to treat any run-off through bio-remediation.

It is also proposed to install a downstream defender within the proposals for the removal of any final sediment or pollutants prior to discharge to the sewer.

Relevant items of supporting information (e.g. evidence, technical documents, plans and drawings etc.), as shown in <u>Table A</u> and <u>Table B</u> of this Guidance **MUST** be listed below, and all relevant material submitted.

I. 107014-0602 – Proposed Drainage

#### **Compliance with Standard S4 – Amenity**

My proposed surface water drainage scheme will comply in the following way/s:

Whilst acknowledging the industrial nature of the immediate vicinity it is still hoped the ponds will offer tangible benefits, beyond flood prevention and environmental conservation, providing an aesthetic value, creating a green space for recreation and relaxation.

Relevant items of supporting information (e.g. evidence, technical documents, plans and drawings etc.), as shown in <u>Table A</u> and <u>Table B</u> of this Guidance **MUST** be listed below, and all relevant material submitted.

I. 107014-0602 – Proposed Drainage

### Compliance with Standard S5 – Biodiversity

My proposed surface water drainage scheme will comply in the following way/s:

The new balancing pond will serve as habitats for diverse flora and fauna. The environment created by balancing ponds will also attracts wildlife, fostering biodiversity in urban areas. Plants, aquatic organisms, and even some species of birds and insects thrive in these environments, enriching local ecosystems.

Relevant items of supporting information (e.g. evidence, technical documents, plans and drawings etc.), as shown in <u>Table A</u> and <u>Table B</u> of this Guidance **MUST** be listed below, and all relevant material submitted.

I. 107014-0602 – Proposed Drainage

# Compliance with **Standard S6** – Design of drainage for Construction and Maintenance and Structural Integrity

My proposed surface water drainage scheme will comply in the following way/s:

Just to confirm, the proposed system will not be required for adoption as it does not serve more than one property. However, it will still be designed to the standards set out in Ciria C753 & Sewers for Adoption 7th Edition. The proposed drainage scheme consists of predominantly standard products and methods of construction that should not concern a suitably experienced and qualified contractor.

An O&M manual will also be provided in due course, including the final 'As Built' constructions drawings and a maintenance schedule for the drainage system.

Relevant items of supporting information (e.g. evidence, technical documents, plans and drawings etc.), as shown <u>Table A</u> and <u>Table B</u> of this Guidance **MUST** be listed below, and all relevant material submitted.

- 1. 107014-0602 Proposed Drainage
- 2. 107014-RP-D-0002 O&M Plan

#### 8. Assessment of Flood Risk

п

| Natural Resources Wales Development Advice maps. (Natural         Resources Wales / Development and flood risk) | Is the site within an area at risk of flooding? Refer to                                                                   | Yes         | No |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|----|
|                                                                                                                 | Natural Resources Wales Development Advice maps. ( <u>Natural</u><br><u>Resources Wales / Development and flood risk</u> ) | $\boxtimes$ |    |

If the proposed development is within the area at risk of flooding, you will need to consider whether it is appropriate to submit a flood consequences assessment. (Refer to <u>Technical Advice Note 15 (TAN15</u>).

| Is the site located within an area susceptible to surface                                                                | Yes | No          |
|--------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| water flooding? Refer to <u>NRW Surface Water Flood Maps</u> .                                                           |     | $\boxtimes$ |
| Is the site located within an area susceptible to                                                                        | Yes | No          |
| groundwater flooding?                                                                                                    |     | $\boxtimes$ |
| Is there a watercourse (as defined under <u>Section 72 Land</u><br>Drainage Act 1991) located within 20m of the proposed | Yes | No          |
| development?                                                                                                             |     | $\boxtimes$ |

#### 9. Surface Water Discharge Hierarchy

Surface water drainage arrangements shall demonstrate the proposed surface water drainage complies with National SuDS Standards. As much of the runoff as possible should be discharged to each hierarchy element before a lower hierarchy element is considered. Collection and infiltration methods of drainage are required to be considered in the first instance. With reference to the hierarchy levels below, please indicate your proposed drainage arrangements.

| Level                                | Yes         | No          |
|--------------------------------------|-------------|-------------|
| I. Collect for use                   |             | $\boxtimes$ |
| 2. Infiltration                      |             | $\square$   |
| 3. To watercourse                    |             | $\boxtimes$ |
| a. Is it an Ordinary<br>Watercourse? |             | $\boxtimes$ |
| b. Is it a Main River?               |             | $\boxtimes$ |
| 4. To surface water sewer            |             | $\boxtimes$ |
| a. Is it a Highway drain?            |             | $\boxtimes$ |
| b. Is it a public sewer?             |             | $\boxtimes$ |
| c. Is it a private sewer?            |             |             |
| d. Other                             |             | $\boxtimes$ |
| 5. To combined sewer                 | $\boxtimes$ |             |

| Has advice been sought from the asset owners? | Yes |             | No | $\boxtimes$ |
|-----------------------------------------------|-----|-------------|----|-------------|
| Has advice been sought from the land owners?  | Yes | $\boxtimes$ | No |             |

#### **10. Infiltration Assessment**

Where infiltration drainage is proposed, testing should be carried out to a methodology agreed with the SAB e.g. <u>Infiltration Drainage - Manual of Good Practice (CIRIA R156)</u> and <u>BRE Soakaway Design (DG 365 - 2016)</u>, and be used to inform the design, construction, maintenance, testing and assessment of infiltration systems.

| Has infiltration test                                                                                | Has infiltration testing been carried out? |                                        |             | No     | $\boxtimes$ |
|------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|-------------|--------|-------------|
| <b>Analysis of development Geology</b> (including both bedrock and superficial deposits where known) |                                            | Silty bro<br>high wate<br>tidal influe | r table     | within | the         |
| Depth to groundwater (metres)                                                                        |                                            | I.2m                                   |             |        |             |
| Reference                                                                                            |                                            |                                        | <b>CP03</b> |        |             |
| Borehole testing                                                                                     | Date                                       | 5                                      |             | 2      | 23          |

| Has a Contaminated Land Assessment been undertaken?         | Yes | $\boxtimes$ | No |             |
|-------------------------------------------------------------|-----|-------------|----|-------------|
| Is the infiltration drainage proposed on contaminated land? | Yes |             | No | $\boxtimes$ |

| Infiltration test result | NA |  |
|--------------------------|----|--|
|--------------------------|----|--|

### II. Non-performance Bond, Adoption, Operation & Maintenance

What are your proposals regarding cost of works, adoption and maintenance of the SuDS scheme?

| Non-performance<br>Bond – Estimated<br>cost of work               | NA |
|-------------------------------------------------------------------|----|
| Adoption (including<br>land agreements etc)                       | NA |
| Funded Maintenance<br>Plan for the lifetime<br>of the development | NA |

## 12. SuDS Scheme Application Checklist

Please complete the following checklist and make sure you have read the <u>Guidance on Making SuDS Applications for SAB Approval</u>, the <u>Guidance on</u> <u>completing the Full Application Form</u>, and provided all the necessary information in support of your application:

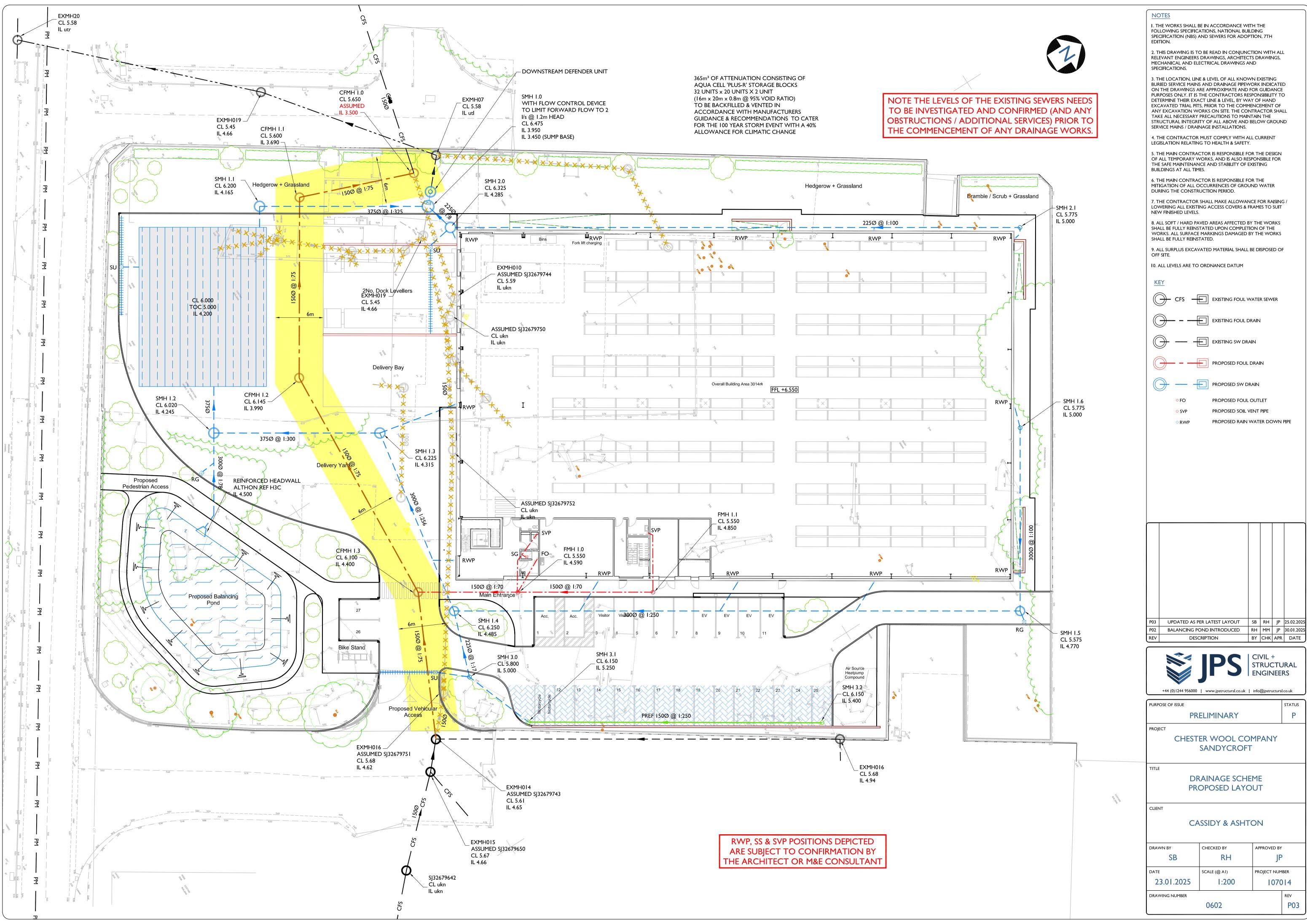
| Correct Full Application fee.                                                                                                                                                                          | Yes 🛛 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Completed, signed and dated Full Application form.                                                                                                                                                     | Yes 🛛 |
| Plan/s specifying the construction area<br>and the extent of the drainage system<br>for which approval is sought. All plan/s<br>shall be at a scale of 1:2500 and MUST<br>show the direction of North. | Yes 🛛 |
| Taken account of SAB <u>Guidance</u> on<br>technical information to be submitted<br>to enable SAB to assess your Full<br>Application.                                                                  | Yes 🛛 |

#### **13.** Declaration

I/ we hereby apply for SuDS Approval as described in this form and the accompanying plans/drawings and additional information. I confirm that I have read and complied with the National SuDS Standards and, to the best of my knowledge, any facts stated are true and accurate and any opinions given are the genuine opinions of the persons giving them.

This form has been completed using evidence from the Flood Consequences Assessment where applicable, surface water drainage strategy and site plans and associated documents.

This form has been completed using accurate information. It can be used as a summary of the detailed surface water drainage proposals on this site, and clearly shows that these drainage proposals conform to the National SuDS Standards for Wales.


| Form completed by                                                          | Russell Hardy                |
|----------------------------------------------------------------------------|------------------------------|
| Signature                                                                  |                              |
| Qualification of person<br>responsible for signing off<br>this application | BSc (Hons) Civil Engineering |
| Company                                                                    | JPS                          |
| On behalf of (Client's details)                                            | Chester Wool Company         |
| Date                                                                       | 30.01.2025                   |
|                                                                            |                              |

Disclaimer

Information provided on this form and in supporting documents may be published on the SABs SuDS register and website and be made publicly available.



## Appendix G – Proposed Drainage Layout





## **Appendix H – Qbar Calculations**



**Russell Hardy** 

Calculated by:

## Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

## Site Details

|                         |                                     |                                                                                     | ence becane |                   |
|-------------------------|-------------------------------------|-------------------------------------------------------------------------------------|-------------|-------------------|
| Site name:              | Factory Road                        |                                                                                     | Latitude:   | 53.20224° N       |
| Site location:          |                                     |                                                                                     | Longitude:  | 3.00546° W        |
| criteria in line with E | invironment Agency guidance "Rainfa | are used to meet normal best practice<br>all runoff management for developments",   | Reference:  | 1430666946        |
| (Defra, 2015). This in  |                                     | the non-statutory standards for SuDS<br>s may be the basis for setting consents for | Date:       | Jan 20 2025 12:40 |
| Runoff esti             | mation approach <sup>IH</sup>       | 124                                                                                 |             |                   |
| Site charac             | cteristics                          | Notes                                                                               |             |                   |
| Total site area (h      | na): <sup>0.835</sup>               | (1) Is Q <sub>BAR</sub> < 2.0                                                       | l/s/ha?     |                   |

## Methodology

| 0,                                  |                             |                                                               |  |  |  |
|-------------------------------------|-----------------------------|---------------------------------------------------------------|--|--|--|
| Q <sub>BAR</sub> estimation method: | Calculate from SPR and SAAR | When Q <sub>BAR</sub> is < 2.0 l/s/ha then limiting discharge |  |  |  |
| QBAR estimation method.             |                             | rates are set at 2.0 l/s/ha.                                  |  |  |  |
| SPR estimation method:              | Calculate from SOIL type    |                                                               |  |  |  |

| SOIL type:   | 2   | 2   |
|--------------|-----|-----|
| HOST class:  | N/A | N/A |
| SPR/SPRHOST: | 0.3 | 0.3 |

1.78

2.18

2.46

## Hydrological characteristics

| SAAR | (mm): |
|------|-------|
|------|-------|

Hydrological region:

Growth curve factor 1 year.

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

| Default | Edited | ( |
|---------|--------|---|
| 2       | 2      |   |
| N/A     | N/A    |   |
| 0.3     | 0.3    |   |

## Edited Default 700 700 9 9 0.88 0.88

1.78

2.18

2.46

## (2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

## (3) Is SPR/SPRHOST $\leq$ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

| • • • • •  |              |
|------------|--------------|
| Greentield | runoff rates |

| G   | reenfield runoff rates | Default | Edited |
|-----|------------------------|---------|--------|
| Q   | <sub>BAR</sub> (I/s):  | 1.52    | 1.52   |
| 1i  | n 1 year (l/s):        | 1.34    | 1.34   |
| 1i  | n 30 years (l/s):      | 2.71    | 2.71   |
| 1i  | n 100 year (l/s):      | 3.32    | 3.32   |
| 1 i | n 200 years (l/s):     | 3.74    | 3.74   |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.



## Appendix I– Surface Water Calculations

| *                     |       |           | Design Ltd |        |         | File: WF v             |              |              |             |            | age 1       |          |         |     |
|-----------------------|-------|-----------|------------|--------|---------|------------------------|--------------|--------------|-------------|------------|-------------|----------|---------|-----|
|                       |       |           |            |        |         | Network: Storm Network |              |              |             |            |             | Vool Con |         |     |
| Chester Business Park |       |           |            |        |         | Russell H              | ardy         |              |             | S          | urface V    | Vater Mo | odel    |     |
| ×                     | CH4 9 | 9QR       |            |        | F       | P01                    |              |              |             |            |             |          |         |     |
|                       |       |           |            |        |         | Desi                   | ign Sett     | <u>tings</u> |             |            |             |          |         |     |
|                       | Raiı  | nfall Met | thodology  | FSR    |         |                        | Maxim        | num Tir      | me of Con   | centratio  | n (mins)    | 30.00    |         |     |
|                       |       |           | od (years) | 100    |         |                        |              |              | Maximum     |            |             |          |         |     |
|                       |       |           | l Flow (%) | 40     |         |                        |              | -            |             | ım Veloci  | . ,         |          |         |     |
|                       |       |           | SR Region  |        | d and W | ales                   |              |              |             | Connecti   |             |          | Soffits |     |
|                       |       |           | 5-60 (mm)  | 17.000 |         |                        |              | Min          | imum Bac    |            |             |          |         |     |
|                       |       |           | Ratio-R    | 0.400  |         |                        |              |              | Preferred   | -          | - · ·       |          |         |     |
|                       |       |           | CV         | 0.750  |         |                        |              |              | clude Inter |            |             |          |         |     |
|                       | Tir   | me of En  | try (mins) | 4.00   |         |                        |              | Enforce      | e best pra  | ctice desi | gn rules    | x        |         |     |
|                       |       |           |            |        |         |                        | <u>Nodes</u> |              |             |            |             |          |         |     |
|                       |       |           | Name       | Area   | T of E  | Cover                  | Diam         |              | Easting     | Northin    | g Dep       | th       |         |     |
|                       |       |           | Name       | (ha)   | (mins)  | Level                  | (mi          |              | (m)         | (m)        | s Dep<br>(m |          |         |     |
|                       |       |           |            | ( - )  | · · ·   | (m)                    | •            | ,            | <b>、</b> ,  | • •        | •           |          |         |     |
|                       |       |           | SMH 1.6    | 0.075  | 4.00    | 5.575                  | 1            | 1200         | 161.533     | 77.90      | 5 0.5       | 75       |         |     |
|                       |       |           | SMH 1.5    | 0.090  | 4.00    | 5.575                  | 1            | 1200         | 161.459     | 54.91      | 9 0.8       | 05       |         |     |
|                       |       |           | SMH 3.0    | 0.104  | 4.00    | 5.800                  | 1            | 1200         | 92.574      | 44.99      | 9 0.8       | 00       |         |     |
|                       |       |           | SMH 1.4    |        |         | 6.250                  | 1            | 1200         | 90.362      | 54.85      | 5 1.7       | 65       |         |     |
|                       |       |           | SMH 1.3    | 0.075  | 4.00    | 6.225                  | 1            | 1350         | 81.033      | 77.32      | 9 1.9       | 10       |         |     |
|                       |       |           | Pond       |        | 4.00    | 5.500                  |              |              | 59.950      | 61.81      | 5 1.0       | 00       |         |     |
|                       |       |           | SMH 1.2    |        |         | 6.020                  | 1            | 1350         | 59.928      | 77.47      | 9 1.7       | 95       |         |     |
|                       |       |           | Tank       | 0.132  | 4.00    | 6.000                  |              |              | 59.890      | 94.72      | 5 1.8       | 00       |         |     |
|                       |       |           | SMH 1.1    |        |         | 6.200                  | 1            | 1350         | 65.919      | 105.99     | 7 2.0       | 35       |         |     |
|                       |       |           | SMH 2.1    | 0.075  | 4.00    | 5.575                  | 1            | L200         | 161.571     | 103.16     | 8 0.5       | 75       |         |     |
|                       |       |           | Dock Lev   | 0.020  | 4.00    | 5.250                  | 1            | L200         | 87.426      | 99.39      | 2 0.7       | 50       |         |     |
|                       |       |           | SMH 2.0    |        |         | 6.325                  | 1            | L200         | 90.085      | 103.30     | 9 2.0       | 40       |         |     |
|                       |       |           | SMH 1.0    |        |         | 6.475                  |              | 1350         | 87.048      | 105.92     |             |          |         |     |
|                       |       |           | EX MH 7    |        |         | 5.580                  | 1            | L200         | 88.182      | 112.21     | 3 2.0       | 80       |         |     |
|                       |       |           |            |        |         |                        | <u>Links</u> |              |             |            |             |          |         |     |
| N                     | ame   | US        | DS         | Leng   |         | mm) /                  | US IL        | DS II        |             | Slope      | Dia         | T of C   | Rain    |     |
|                       |       | Node      | Node       | (m     | -       | n                      | (m)          | (m)          |             | (1:X)      | (mm)        | (mins)   | (mm/hr) |     |
|                       | .000  | SMH 1.6   |            |        |         | 0.600                  | 5.000        | 4.770        |             | 100.0      | 300         | 4.24     | 50.0    |     |
|                       | .001  | SMH 1.5   |            |        |         | 0.600                  | 4.770        | 4.485        |             | 249.5      | 300         | 5.44     | 50.0    |     |
|                       | .000  | SMH 3.0   |            |        |         | 0.600                  | 5.000        | 4.560        |             | 23.0       | 225         | 4.06     | 50.0    |     |
|                       | .002  | SMH 1.4   |            |        |         | 0.600                  | 4.485        | 4.390        |             | 256.1      | 300         | 5.85     | 50.0    |     |
|                       | .003  | SMH 1.3   |            |        |         | 0.600                  | 4.315        | 4.245        |             | 300.0      | 375         | 6.19     | 50.0    |     |
|                       | .000  | Pond      | SMH 1.2    |        |         | 0.600                  | 4.500        | 4.320        |             | 87.0       | 300         | 4.15     | 50.0    |     |
|                       | .004  | SMH 1.2   |            | 17.2   |         | 0.600                  | 4.225        | 4.200        |             | 689.8      | 375         | 6.61     | 50.0    |     |
|                       | .005  | Tank      | SMH 1.1    |        |         | 0.600                  | 4.200        | 4.165        |             | 365.2      | 375         | 6.84     | 50.0    |     |
| 1.                    | .006  | SMH 1.1   | 1 SMH 1.0  | ) 21.1 | 29      | 0.600                  | 4.165        | 3.950        | 0.215       | 98.3       | 375         | 7.03     | 50.0    |     |
| 1.                    |       |           | SMH 1.2    | 1 12.7 | 83      | 0.600                  |              |              | 5 0.035     |            |             | 6.84     | 50      | 0.0 |

| Name  | Vel<br>(m/s) | Cap<br>(I/s) | Flow<br>(I/s) | US<br>Depth<br>(m) | DS<br>Depth<br>(m) | Σ Area<br>(ha) | Σ Add<br>Inflow<br>(I/s) | Pro<br>Depth<br>(mm) | Pro<br>Velocity<br>(m/s) |
|-------|--------------|--------------|---------------|--------------------|--------------------|----------------|--------------------------|----------------------|--------------------------|
| 1.000 | 1.572        | 111.1        | 14.2          | 0.275              | 0.505              | 0.075          | 0.0                      | 72                   | 1.088                    |
| 1.001 | 0.991        | 70.0         | 31.3          | 0.505              | 1.465              | 0.165          | 0.0                      | 140                  | 0.963                    |
| 2.000 | 2.742        | 109.0        | 19.7          | 0.575              | 1.465              | 0.104          | 0.0                      | 65                   | 2.095                    |
| 1.002 | 0.978        | 69.1         | 51.0          | 1.465              | 1.535              | 0.269          | 0.0                      | 192                  | 1.067                    |
| 1.003 | 1.041        | 114.9        | 65.3          | 1.535              | 1.400              | 0.344          | 0.0                      | 203                  | 1.072                    |
| 3.000 | 1.686        | 119.2        | 0.0           | 0.700              | 1.400              | 0.000          | 0.0                      | 0                    | 0.000                    |
| 1.004 | 0.682        | 75.3         | 65.3          | 1.420              | 1.425              | 0.344          | 0.0                      | 271                  | 0.765                    |
| 1.005 | 0.942        | 104.0        | 90.3          | 1.425              | 1.660              | 0.476          | 0.0                      | 271                  | 1.056                    |
| 1.006 | 1.827        | 201.8        | 90.3          | 1.660              | 2.150              | 0.476          | 0.0                      | 175                  | 1.778                    |



Page 2 Chester Wool Company Surface Water Model

#### <u>Links</u>

| Name  | US<br>Node | DS<br>Node | Length<br>(m) | ks (mm) /<br>n | US IL<br>(m) | DS IL<br>(m) | Fall<br>(m) | Slope<br>(1:X) |     | T of C<br>(mins) | Rain<br>(mm/hr) |
|-------|------------|------------|---------------|----------------|--------------|--------------|-------------|----------------|-----|------------------|-----------------|
| 4.000 | SMH 2.1    | SMH 2.0    | 71.486        | 0.600          | 5.000        | 4.285        | 0.715       | 100.0          | 225 | 4.91             | 50.0            |
| 5.000 | Dock Lev   | SMH 2.0    | 4.734         | 0.600          | 4.500        | 4.285        | 0.215       | 22.0           | 150 | 4.04             | 50.0            |
| 4.001 | SMH 2.0    | SMH 1.0    | 4.010         | 0.600          | 4.285        | 4.100        | 0.185       | 21.7           | 225 | 4.94             | 50.0            |
| 1.007 | SMH 1.0    | EX MH 7    | 6.386         | 0.600          | 3.950        | 3.500        | 0.450       | 14.2           | 150 | 7.07             | 50.0            |

| Name  | Vel<br>(m/s) | Cap<br>(I/s) | Flow<br>(I/s) | US<br>Depth<br>(m) | DS<br>Depth<br>(m) | Σ Area<br>(ha) | Σ Add<br>Inflow<br>(I/s) | Pro<br>Depth<br>(mm) | Pro<br>Velocity<br>(m/s) |
|-------|--------------|--------------|---------------|--------------------|--------------------|----------------|--------------------------|----------------------|--------------------------|
| 4.000 | 1.307        | 52.0         | 14.2          | 0.350              | 1.815              | 0.075          | 0.0                      | 80                   | 1.119                    |
| 5.000 | 2.155        | 38.1         | 3.8           | 0.600              | 1.890              | 0.020          | 0.0                      | 32                   | 1.383                    |
| 4.001 | 2.822        | 112.2        | 18.0          | 1.815              | 2.150              | 0.095          | 0.0                      | 61                   | 2.092                    |
| 1.007 | 2.688        | 47.5         | 108.3         | 2.375              | 1.930              | 0.571          | 0.0                      | 150                  | 2.738                    |

#### **Pipeline Schedule**

| Link  | Length<br>(m) | Slope<br>(1:X) | Dia<br>(mm) | Link<br>Type | US CL<br>(m) | US IL<br>(m) | US Depth<br>(m) | DS CL<br>(m) | DS IL<br>(m) | DS Depth<br>(m) |
|-------|---------------|----------------|-------------|--------------|--------------|--------------|-----------------|--------------|--------------|-----------------|
| 1.000 | 22.986        | 100.0          | 300         | Circular     | 5.575        | 5.000        | 0.275           | 5.575        | 4.770        | 0.505           |
| 1.001 | 71.097        | 249.5          | 300         | Circular     | 5.575        | 4.770        | 0.505           | 6.250        | 4.485        | 1.465           |
| 2.000 | 10.101        | 23.0           | 225         | Circular     | 5.800        | 5.000        | 0.575           | 6.250        | 4.560        | 1.465           |
| 1.002 | 24.333        | 256.1          | 300         | Circular     | 6.250        | 4.485        | 1.465           | 6.225        | 4.390        | 1.535           |
| 1.003 | 21.106        | 300.0          | 375         | Circular     | 6.225        | 4.315        | 1.535           | 6.020        | 4.245        | 1.400           |
| 3.000 | 15.664        | 87.0           | 300         | Circular     | 5.500        | 4.500        | 0.700           | 6.020        | 4.320        | 1.400           |
| 1.004 | 17.246        | 689.8          | 375         | Circular     | 6.020        | 4.225        | 1.420           | 6.000        | 4.200        | 1.425           |
| 1.005 | 12.783        | 365.2          | 375         | Circular     | 6.000        | 4.200        | 1.425           | 6.200        | 4.165        | 1.660           |
| 1.006 | 21.129        | 98.3           | 375         | Circular     | 6.200        | 4.165        | 1.660           | 6.475        | 3.950        | 2.150           |
| 4.000 | 71.486        | 100.0          | 225         | Circular     | 5.575        | 5.000        | 0.350           | 6.325        | 4.285        | 1.815           |
| 5.000 | 4.734         | 22.0           | 150         | Circular     | 5.250        | 4.500        | 0.600           | 6.325        | 4.285        | 1.890           |
| 4.001 | 4.010         | 21.7           | 225         | Circular     | 6.325        | 4.285        | 1.815           | 6.475        | 4.100        | 2.150           |
| 1.007 | 6.386         | 14.2           | 150         | Circular     | 6.475        | 3.950        | 2.375           | 5.580        | 3.500        | 1.930           |

| Link  | US<br>Node | Dia<br>(mm) | Node<br>Type | MH<br>Type | DS<br>Node | Dia<br>(mm) | Node<br>Type | MH<br>Type |
|-------|------------|-------------|--------------|------------|------------|-------------|--------------|------------|
| 1.000 | SMH 1.6    | 1200        | Manhole      | Adoptable  | SMH 1.5    | 1200        | Manhole      | Adoptable  |
| 1.001 | SMH 1.5    | 1200        | Manhole      | Adoptable  | SMH 1.4    | 1200        | Manhole      | Adoptable  |
| 2.000 | SMH 3.0    | 1200        | Manhole      | Adoptable  | SMH 1.4    | 1200        | Manhole      | Adoptable  |
| 1.002 | SMH 1.4    | 1200        | Manhole      | Adoptable  | SMH 1.3    | 1350        | Manhole      | Adoptable  |
| 1.003 | SMH 1.3    | 1350        | Manhole      | Adoptable  | SMH 1.2    | 1350        | Manhole      | Adoptable  |
| 3.000 | Pond       |             | Junction     |            | SMH 1.2    | 1350        | Manhole      | Adoptable  |
| 1.004 | SMH 1.2    | 1350        | Manhole      | Adoptable  | Tank       |             | Junction     |            |
| 1.005 | Tank       |             | Junction     |            | SMH 1.1    | 1350        | Manhole      | Adoptable  |
| 1.006 | SMH 1.1    | 1350        | Manhole      | Adoptable  | SMH 1.0    | 1350        | Manhole      | Adoptable  |
| 4.000 | SMH 2.1    | 1200        | Manhole      | Adoptable  | SMH 2.0    | 1200        | Manhole      | Adoptable  |
| 5.000 | Dock Lev   | 1200        | Manhole      | Adoptable  | SMH 2.0    | 1200        | Manhole      | Adoptable  |
| 4.001 | SMH 2.0    | 1200        | Manhole      | Adoptable  | SMH 1.0    | 1350        | Manhole      | Adoptable  |
| 1.007 | SMH 1.0    | 1350        | Manhole      | Adoptable  | EX MH 7    | 1200        | Manhole      | Adoptable  |

| * |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

#### Simulation Settings

|                                                                                                                                                                                                                                                         | <u>Simulation Se</u>               | <u>ettings</u>                                                              |                                                                                                                                            |                                         |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Rainfall Methodology FSR<br>Rainfall Events Singula<br>FSR Region Englar<br>M5-60 (mm) 17.000<br>Ratio-R 0.400<br>Summer CV 0.750<br>Winter CV 0.840                                                                                                    | nd and Wales<br>0                  | Drain Do<br>Additional<br>St<br>Check Di                                    | Analysis Speed<br>kip Steady State<br>wn Time (mins<br>Storage (m <sup>3</sup> /ha<br>arting Level (m<br>ischarge Rate(s<br>scharge Volume | e x<br>) 240<br>) 20.0<br>)<br>x        |  |  |  |  |  |
|                                                                                                                                                                                                                                                         | Storm Dura                         | tions                                                                       |                                                                                                                                            |                                         |  |  |  |  |  |
| 156018036030120240480                                                                                                                                                                                                                                   | 6009607201440                      | 2160<br>2880                                                                |                                                                                                                                            | 00 10080<br>40                          |  |  |  |  |  |
| Return Period Climat                                                                                                                                                                                                                                    | te Change Ado                      | ditional Area                                                               | Additional F                                                                                                                               | low                                     |  |  |  |  |  |
| (years) (O                                                                                                                                                                                                                                              | CC %)                              | (A %)                                                                       | (Q %)                                                                                                                                      |                                         |  |  |  |  |  |
| 100                                                                                                                                                                                                                                                     | 40                                 | 0                                                                           |                                                                                                                                            | 0                                       |  |  |  |  |  |
| Node SMH 1.0 Online Hydro-Brake <sup>®</sup> Control                                                                                                                                                                                                    |                                    |                                                                             |                                                                                                                                            |                                         |  |  |  |  |  |
| Flap ValvexObjective(HE) Minimise upstream storageDownstream Link1.007Sump Available✓Replaces Downstream LinkxProduct NumberCTL-SHE-0064-2000-1200-2000Invert Level (m)3.950Min Outlet Diameter (m)0.100Design Depth (m)1.200Min Node Diameter (mm)1200 |                                    |                                                                             |                                                                                                                                            |                                         |  |  |  |  |  |
| Node Tar                                                                                                                                                                                                                                                | <u>nk Depth/Area S</u>             | Storage Struc                                                               | <u>ture</u>                                                                                                                                |                                         |  |  |  |  |  |
| Base Inf Coefficient (m/hr) 0.00000<br>Side Inf Coefficient (m/hr) 0.00000                                                                                                                                                                              | Safety Facto<br>Porosit            |                                                                             | Inve<br>Time to half en                                                                                                                    | rt Level (m) 4.200<br>npty (mins)       |  |  |  |  |  |
| DepthAreaInf Area(m)(m²)(m²)0.000320.0320.0                                                                                                                                                                                                             | DepthArea(m)(m²)0.800320.0         | Inf Area<br>(m <sup>2</sup> )<br>370.7                                      | Depth Area<br>(m) (m²)<br>0.801 0.0                                                                                                        | (m²)                                    |  |  |  |  |  |
| Nodo Do                                                                                                                                                                                                                                                 | nd Donth (Area                     | Storego Struc                                                               | <b>t</b>                                                                                                                                   |                                         |  |  |  |  |  |
| Node Pol                                                                                                                                                                                                                                                | nd Depth/Area                      | Storage Struc                                                               | ture                                                                                                                                       |                                         |  |  |  |  |  |
| Base Inf Coefficient (m/hr) 0.00000<br>Side Inf Coefficient (m/hr) 0.00000                                                                                                                                                                              | Safety Facto<br>Porosit            |                                                                             | Inve<br>Time to half en                                                                                                                    | rt Level (m)  3.500<br>npty (mins)  255 |  |  |  |  |  |
| Depth         Area           (m)         (m²)           0.000         130.0                                                                                                                                                                             | (m²)                               | Depth         Area           (m)         (m²)           2.000         370.0 | (m²)                                                                                                                                       |                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                         | Other (defa                        | ults)                                                                       |                                                                                                                                            |                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                         | Loss (junction)<br>Loss (junction) |                                                                             | Apply Recomme<br>Fi                                                                                                                        | ended Losses x<br>lood Risk (m) 0.300   |  |  |  |  |  |



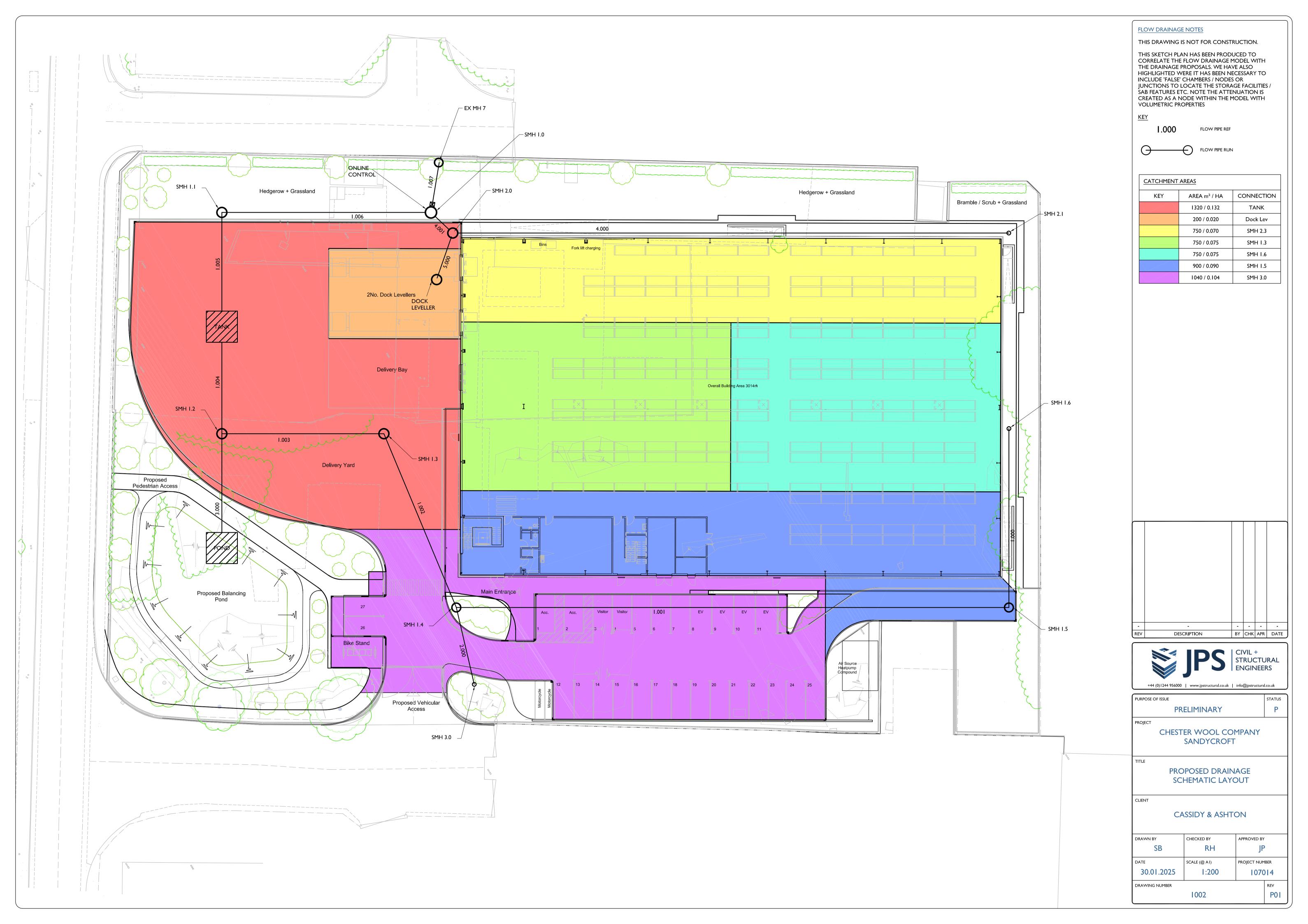
File: WF with Pond.pfd Network: Storm Network Russell Hardy P01

#### <u>Rainfall</u>

| Event                                | Peak<br>Intensity<br>(mm/hr) | Average<br>Intensity<br>(mm/hr) |
|--------------------------------------|------------------------------|---------------------------------|
| 100 year +40% CC 15 minute summer    | 408.473                      | 115.584                         |
| 100 year +40% CC 15 minute winter    | 286.647                      | 115.584                         |
| 100 year +40% CC 30 minute summer    | 268.775                      | 76.054                          |
| 100 year +40% CC 30 minute winter    | 188.614                      | 76.054                          |
| 100 year +40% CC 60 minute summer    | 180.954                      | 47.821                          |
| 100 year +40% CC 60 minute winter    | 120.222                      | 47.821                          |
| 100 year +40% CC 120 minute summer   | 110.370                      | 29.168                          |
| 100 year +40% CC 120 minute winter   | 73.327                       | 29.168                          |
| 100 year +40% CC 180 minute summer   | 83.953                       | 21.604                          |
| 100 year +40% CC 180 minute winter   | 54.572                       | 21.604                          |
| 100 year +40% CC 240 minute summer   | 65.765                       | 17.380                          |
| 100 year +40% CC 240 minute winter   | 43.693                       | 17.380                          |
| 100 year +40% CC 360 minute summer   | 49.370                       | 12.705                          |
| 100 year +40% CC 360 minute winter   | 32.092                       | 12.705                          |
| 100 year +40% CC 480 minute summer   | 38.291                       | 10.119                          |
| 100 year +40% CC 480 minute winter   | 25.439                       | 10.119                          |
| 100 year +40% CC 600 minute summer   | 30.992                       | 8.477                           |
| 100 year +40% CC 600 minute winter   | 21.176                       | 8.477                           |
| 100 year +40% CC 720 minute summer   | 27.387                       | 7.340                           |
| 100 year +40% CC 720 minute winter   | 18.406                       | 7.340                           |
| 100 year +40% CC 960 minute summer   | 22.191                       | 5.844                           |
| 100 year +40% CC 960 minute winter   | 14.700                       | 5.844                           |
| 100 year +40% CC 1440 minute summer  | 15.789                       | 4.232                           |
| 100 year +40% CC 1440 minute winter  | 10.611                       | 4.232                           |
| 100 year +40% CC 2160 minute summer  | 11.070                       | 3.059                           |
| 100 year +40% CC 2160 minute winter  | 7.628                        | 3.059                           |
| 100 year +40% CC 2880 minute summer  | 9.060                        | 2.428                           |
| 100 year +40% CC 2880 minute winter  | 6.089                        | 2.428                           |
| 100 year +40% CC 4320 minute summer  | 6.697                        | 1.751                           |
| 100 year +40% CC 4320 minute winter  | 4.410                        | 1.751                           |
| 100 year +40% CC 5760 minute summer  | 5.418                        | 1.387                           |
| 100 year +40% CC 5760 minute winter  | 3.507                        | 1.387                           |
| 100 year +40% CC 7200 minute summer  | 4.536                        | 1.157                           |
| 100 year +40% CC 7200 minute winter  | 2.928                        | 1.157                           |
| 100 year +40% CC 8640 minute summer  | 3.910                        | 0.998                           |
| 100 year +40% CC 8640 minute winter  | 2.524                        | 0.998                           |
| 100 year +40% CC 10080 minute summer | 3.448                        | 0.880                           |
| 100 year +40% CC 10080 minute winter | 2.226                        | 0.880                           |



File: WF with Pond.pfd Network: Storm Network Russell Hardy P01 Page 5 Chester Wool Company Surface Water Model


#### Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.32%

| Node Event        | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | SMH 1.6    | 11             | 5.539        | 0.539        | 41.7            | 2.0176           | 0.0000        | FLOOD RISK |
| 15 minute winter  | SMH 1.5    | 11             | 5.506        | 0.736        | 76.2            | 2.4781           | 0.0000        | FLOOD RISK |
| 15 minute winter  | SMH 3.0    | 11             | 5.271        | 0.271        | 57.8            | 1.0106           | 0.0000        | SURCHARGED |
| 15 minute winter  | SMH 1.4    | 11             | 5.138        | 0.653        | 123.9           | 0.7390           | 0.0000        | SURCHARGED |
| 960 minute winter | SMH 1.3    | 945            | 4.914        | 0.599        | 11.4            | 1.3277           | 0.0000        | SURCHARGED |
| 960 minute winter | Pond       | 945            | 4.914        | 0.414        | 10.5            | 113.6204         | 0.0000        | SURCHARGED |
| 960 minute winter | SMH 1.2    | 945            | 4.914        | 0.689        | 11.2            | 0.9858           | 0.0000        | SURCHARGED |
| 960 minute winter | Tank       | 945            | 4.914        | 0.714        | 12.1            | 218.0600         | 0.0000        | SURCHARGED |
| 960 minute winter | SMH 1.1    | 945            | 4.914        | 0.749        | 7.7             | 1.0716           | 0.0000        | SURCHARGED |
| 15 minute summer  | SMH 2.1    | 10             | 5.153        | 0.153        | 41.7            | 0.5734           | 0.0000        | ОК         |
| 960 minute winter | Dock Lev   | 945            | 4.914        | 0.414        | 0.7             | 0.6886           | 0.0000        | SURCHARGED |
| 960 minute winter | SMH 2.0    | 945            | 4.914        | 0.629        | 3.2             | 0.7112           | 0.0000        | SURCHARGED |
| 960 minute winter | SMH 1.0    | 945            | 4.914        | 0.964        | 7.0             | 1.3792           | 0.0000        | SURCHARGED |
| 960 minute winter | EX MH 7    | 945            | 3.520        | 0.020        | 1.8             | 0.0000           | 0.0000        | ОК         |

| Link Event        | US       | Link  | DS      | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|----------|-------|---------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node     |       | Node    | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | SMH 1.6  | 1.000 | SMH 1.5 | 35.3    | 0.846    | 0.318    | 1.6187   |           |
| 15 minute winter  | SMH 1.5  | 1.001 | SMH 1.4 | 74.9    | 1.064    | 1.070    | 5.0066   |           |
| 15 minute winter  | SMH 3.0  | 2.000 | SMH 1.4 | 53.9    | 1.870    | 0.494    | 0.4017   |           |
| 15 minute winter  | SMH 1.4  | 1.002 | SMH 1.3 | 123.7   | 1.757    | 1.791    | 1.7135   |           |
| 960 minute winter | SMH 1.3  | 1.003 | SMH 1.2 | 11.2    | 0.459    | 0.098    | 2.3279   |           |
| 960 minute winter | Pond     | 3.000 | SMH 1.2 | -10.5   | -0.279   | -0.088   | 1.1030   |           |
| 960 minute winter | SMH 1.2  | 1.004 | Tank    | 8.4     | 0.578    | 0.111    | 1.9022   |           |
| 960 minute winter | Tank     | 1.005 | SMH 1.1 | 4.7     | 0.430    | 0.045    | 1.4099   |           |
| 960 minute winter | SMH 1.1  | 1.006 | SMH 1.0 | -2.9    | 0.090    | -0.015   | 2.3305   |           |
| 15 minute summer  | SMH 2.1  | 4.000 | SMH 2.0 | 42.4    | 1.436    | 0.815    | 2.3258   |           |
| 960 minute winter | Dock Lev | 5.000 | SMH 2.0 | 0.7     | 0.354    | 0.017    | 0.0833   |           |
| 960 minute winter | SMH 2.0  | 4.001 | SMH 1.0 | 7.0     | 0.701    | 0.062    | 0.1595   |           |
| 960 minute winter | SMH 1.0  | 1.007 | EX MH 7 | 1.8     | 1.267    | 0.038    | 0.0091   | 116.6     |



## Appendix J – Schematic Layout



Chester Wool Company Drainage Strategy



## Appendix K – O&M Manual

# CHESTER WOOL FACTORY Sandycroft

Maintenance Plan

107014-RP-D-0002 Rev: P01 January 2025





### Table 1: SuDS Maintenance Inspection Checklist

| GENERAL INFORMATION                                 |                                                                   |                      |           |  |  |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------|----------------------|-----------|--|--|--|--|
| Site ID                                             | Chester Wool Company, Fact                                        | ory Road, Sandycrofy |           |  |  |  |  |
| Site Location and co-ordinates (GIS if appropriate) | CH5 2QJ, SJ329677, (332923,                                       | 367715)              |           |  |  |  |  |
| As Built Drawing Reference(s)                       | 107014-0601                                                       |                      |           |  |  |  |  |
| Agreements Restrictions                             |                                                                   |                      |           |  |  |  |  |
| Discharge Type                                      | Connection                                                        | Outflow              | Agreement |  |  |  |  |
| Surface Water                                       | To Public Sewer                                                   | 2 I/s                | S106      |  |  |  |  |
| Foul                                                | To Public Sewer                                                   | < 1 1/s              | S106      |  |  |  |  |
| Elements forming the SuDS scheme                    | Permeable Paving / Attenuation / Hydrobrake / Downstream Defender |                      |           |  |  |  |  |



| INFRASTRUCTURE                                                                                                                                    | Inspection<br>date |     |                    |                   | Inspection<br>date |     |                    |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|--------------------|-------------------|--------------------|-----|--------------------|-------------------|
| RECOMMENDED FREQUENY – Annually                                                                                                                   | Details            | Y/N | Action<br>required | Date<br>Completed | Details            | Y/N | Action<br>required | Date<br>Completed |
| Is there evidence of any accidental damage to the system (e.g. wheel ruts?)                                                                       |                    |     |                    |                   |                    |     |                    |                   |
| Is there any evidence of tampering with the flow controls?                                                                                        |                    |     |                    |                   |                    |     |                    |                   |
| Is there any evidence of tampering with the Attenuation Tanks?                                                                                    |                    |     |                    |                   |                    |     |                    |                   |
| Are Attenuation tank vents clear?                                                                                                                 |                    |     |                    |                   |                    |     |                    |                   |
| Are gullies/channels/kerb drainage clear of debris/detritus?                                                                                      |                    |     |                    |                   |                    |     |                    |                   |
| Are Rainwater Down Pipes and gutters clear of debris /detritus?                                                                                   |                    |     |                    |                   |                    |     |                    |                   |
| Does Downstream Defender require emptying / jetting?                                                                                              |                    |     |                    |                   |                    |     |                    |                   |
| Does permeable or porous surfacing require sweeping to remove silt?                                                                               |                    |     |                    |                   |                    |     |                    |                   |
| Drainage network to be checked CCTV survey.                                                                                                       |                    |     |                    |                   |                    |     |                    |                   |
| A list of defects should be compiled with high, medium and low risk of failure. High risk defects should be fixed immediately, medium risk should |                    |     |                    |                   |                    |     |                    |                   |
| be fixed within 6 months and low risk to be monitored.                                                                                            |                    |     |                    |                   |                    |     |                    |                   |



| GENERAL INSPECTION ITEMS                                                                                                                 | Inspection<br>date |     |                    |                   | Inspection<br>date |     |                    |                   |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|--------------------|-------------------|--------------------|-----|--------------------|-------------------|
| RECOMMENDED FREQUENY – Biannually                                                                                                        | Details            | Y/N | Action<br>required | Date<br>Completed | Details            | Y/N | Action<br>required | Date<br>Completed |
| Is there any evidence of erosion, channelling, ponding (where not desirable) or other poor hydraulic performance?                        |                    |     |                    |                   |                    |     |                    |                   |
| Is there any evidence of accidental spillages, oils, poor water quality, odours, nuisance insects?                                       |                    |     |                    |                   |                    |     |                    |                   |
| Have any health and safety risks been identified to either the public or maintenance operatives?                                         |                    |     |                    |                   |                    |     |                    |                   |
| Is there any deterioration in the surface of permeable or porous surfaces (e.g. rutting, spreading of blocks or signs of ponding water)? |                    |     |                    |                   |                    |     |                    |                   |



| SILT/SEDIMENT ACCUMULATION                                                                                                                                                     | Inspection<br>date |     |                    |                   | Inspection<br>date | 1   |                    |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|--------------------|-------------------|--------------------|-----|--------------------|-------------------|
| RECOMMENDED FREQUENY – Monthly                                                                                                                                                 | Details            | Y/N | Action<br>required | Date<br>Completed | Details            | Y/N | Action<br>required | Date<br>Completed |
| Is there any sediment accumulation at inlets (or other defined accumulation zones such as the surface of filter drains or infiltration basins and within proprietary devices)? |                    |     |                    |                   |                    |     |                    |                   |
| SYSTEM BLOCKAGES / LITTER BUILD UP                                                                                                                                             |                    |     |                    |                   |                    |     |                    |                   |
| Is there evidence of litter accumulation in the system?<br>If yes, is this a blockage risk?                                                                                    |                    |     |                    |                   |                    |     |                    |                   |
| Is there any evidence of any other clogging/blockage of outlets or drainage paths?                                                                                             |                    |     |                    |                   |                    |     |                    |                   |

| VEGETATION                                                                                                                          | Inspection<br>date |     |                    |                   | Inspection<br>date |     |                    |                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|--------------------|-------------------|--------------------|-----|--------------------|-------------------|--|
| RECOMMENDED FREQUENY – Monthly During Summer<br>Quarterly Through Winter                                                            | Details            | Y/N | Action<br>required | Date<br>Completed | Details            | Y/N | Action<br>required | Date<br>Completed |  |
| Is the vegetation condition satisfactory (density, weed growth, coverage etc.)? (Check against approved planting regime.)           |                    |     |                    |                   |                    |     |                    |                   |  |
| Does any part of the system require weeding / pruning / mowing?<br>(Check against maintenance frequency stated in approved design.) |                    |     |                    |                   |                    |     |                    |                   |  |
| Is there any evidence of invasive species becoming established?                                                                     |                    |     |                    |                   |                    |     |                    |                   |  |
| If yes, state action required.                                                                                                      |                    |     |                    |                   |                    |     |                    |                   |  |



| Are there any other matters that could affect the performance of the system in relation to the design objectives for hydraulic, water quality, biodiversity and visual aspects? (Specify.) |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| OTHER OBSERVATIONS                                                                                                                                                                         |  |  |  |  |
| Information appended (e.g. photos)                                                                                                                                                         |  |  |  |  |
|                                                                                                                                                                                            |  |  |  |  |



|                                           | Inspection<br>date |     |                    |                   | Inspection<br>date |     |                    |                   |
|-------------------------------------------|--------------------|-----|--------------------|-------------------|--------------------|-----|--------------------|-------------------|
|                                           | Details            | Y/N | Action<br>required | Date<br>Completed | Details            | Y/N | Action<br>required | Date<br>Completed |
| SUITABILITY OF CURRENT MAINTENANCE REGIME |                    |     |                    |                   |                    |     |                    |                   |
| Continue as current                       |                    |     |                    |                   |                    |     |                    |                   |
| Increase maintenance                      |                    |     |                    |                   |                    |     |                    |                   |
| Decrease maintenance                      |                    |     |                    |                   |                    |     |                    |                   |
| NEXT INSPECTION                           |                    |     |                    |                   |                    |     |                    |                   |
| Proposed date for next inspection         |                    |     |                    |                   |                    |     |                    |                   |



**Additional Notes**