

LAND OFF ABER ROAD, FLINT, FLINTSHIRE, CH6 5EX

FLOOD CONSEQUENCES AND DRAINAGE ASSESSMENT

Final Report v2.1 June 2023

Weetwood Services Ltd info@weetwood.net www.weetwood.net

Report TitleLand Off Aber Road, Flint, Flintshire, CH6 5EX
Flood Consequences and Drainage Assessment
Final Report v2.1ClientHMG (Aber Road) Limited

7 June 2023

Date of issue

Prepared by

Checked by Approved by Matthew Newbold BSc (Hons) MSc GradCIWEM, Graduate Flood Risk Consultant Tim Brook BSc (Hons), Principal Engineer Rebecca Murphy BSc (Hons), Associate Director Adam Edgerley BSc (Hons), Director

This document has been prepared solely as a Flood Consequences and Drainage Assessment for HMG (Aber Road) Limited. This report is confidential to HMG (Aber Road) Limited and Weetwood Services Ltd accepts no responsibility or liability for any use that is made of this document other than by HMG (Aber Road) Limited for the purposes for which it was originally commissioned and prepared.

Contents

Cont	ature Sheet tents of Tables, Figures & Appendices	i ii iii
1	Introduction	1
1.1	Purpose of Report	1
1.2	Structure of the Report	1
1.3	Relevant Documents	1
2	Site Details and Proposed Development	2
2.1	Site Location	2
2.2	Existing and Proposed Development	
2.3	Waterbodies in the Vicinity of the Site	
2.4	Topographic Levels	
2.5	Ground Conditions	4
3	Planning Policy and Guidance	5
3.1	National Planning Policy and Guidance	
3.2	Local Planning Policy and Guidance	
3.3	Water Framework Directive	
3.4	Environmental Permitting and Land Drainage Consent	
4	Review of Flood Risk	8
4.1	Historical Records of Flooding	8
4.2	Flood Zone Designation	
4.3	Flood Risk from the Sea (Tidal / Coastal)	
4.4	Flood Risk from Rivers (Fluvial)	
4.5	Flood Risk from Surface Water (Pluvial) and Small Watercourses	
4.6	Flood Risk from Reservoirs, Canals and Other Artificial Sources	
4.7	Flood Risk from Groundwater	
4.8	Justification Test	
5	Flood Risk Mitigation Measures	
5.1	Finished Floor Levels	
5.2	Development Platform	
5.3	Flood Plan	
5.4	Flood Risk Elsewhere	
6	Surface Water Management	
6.1	Surface Water Drainage at the Existing Site	
6.2	Surface Water Drainage at the Redeveloped Site	
7	Foul Water Management	
8	Summary and Recommendation	

List of Tables

Table 1:	Existing Tidal / Coastal Flood Defence Information	9
	Site Flood Information - Tidal Overtopping (Baseline)	
	Site Flood Information - Tidal Breach (Baseline)	
Table 4:	Site Flood Information (Baseline)	
Table 5:	Peak Runoff Rate - Existing Site	
Table 6:	Maintenance Requirements	

List of Figures

Figure 1:	Site Location	2
Figure 2:	Digital Terrain Model from LiDAR Data	3
Figure 3:	Development Advice Map	8
Figure 4:	River Dee (Tidal) Modelled Flood Extents (Baseline) - Overtopping	
Figure 5:	River Dee (Tidal) Modelled Flood Extents (Baseline) - Breach	
Figure 6:	Swinchiard Brook Modelled Flood Extents (Baseline) - Free Flowing	
Figure 7:	Swinchiard Brook Modelled Flood Extents (Baseline) - Bridge Blockage	
Figure 8:	Flood Risk from Surface Water and Small Watercourses	
Figure 9:	Location of Proposed Compensatory Storage	

List of Appendices

- Appendix A: Proposed Site Plan
- Appendix B: Proposed Site Plan
- Appendix C: Topographic Survey
- Appendix D: River Dee (Tidal) Hydraulic Modelling Study Technical Note, April 2023
- Appendix E: Swinchiard Brook Hydraulic Modelling Study, June 2023
- Appendix F: Preliminary Proposed Site Levels
- Appendix G: Flood Risk Comparison Plots
- Appendix H: Dŵr Cymru Welsh Water Public Sewer Record
- Appendix I: Greenfield Runoff
- Appendix J: Peak Runoff Rate from Existing Site
- Appendix K: Surface Water Attenuation Storage Volume Calculation
- Appendix L: Preliminary Surface Water Drainage Layout

1 INTRODUCTION

1.1 Purpose of Report

Weetwood Services Ltd ('Weetwood') has been instructed by HMG (Aber Road) Limited to prepare a Flood Consequences and Drainage Assessment (FCDA) report to accompany a full planning application for the proposed redevelopment of land off Aber Road, Flint, Flintshire ("the site") for industrial use.

The assessment has been undertaken in accordance with the requirements of Technical Advice Note 15 (TAN15).

1.2 Structure of the Report

The report is structured as follows:

- Section 1 Introduction and report structure
- Section 2 Provides background information relating to the development site
- Section 3 Presents national and local flood risk and drainage planning policy
- **Section 4** Assesses the potential sources of flooding to the development site
- Section 5 Presents flood risk mitigation measures based on the findings of the assessment
- **Section 6** Presents an illustrative surface water drainage scheme
- Section 7 Summarises how foul water flows from the development will be disposed
- Section 8 Presents a summary of key findings and the recommendations

1.3 Relevant Documents

The assessment has been informed by the following documents:

- Strategic Flood Consequences Assessment, Flintshire County Council, July 2018
- Preliminary Flood Risk Assessment, Flintshire County Council, June 2011

2 SITE DETAILS AND PROPOSED DEVELOPMENT

2.1 Site Location

The approximately 0.7 ha site is located to the south-east of Aber Road at Ordnance Survey National Grid Reference SJ 239 734, as shown in **Figure 1**.

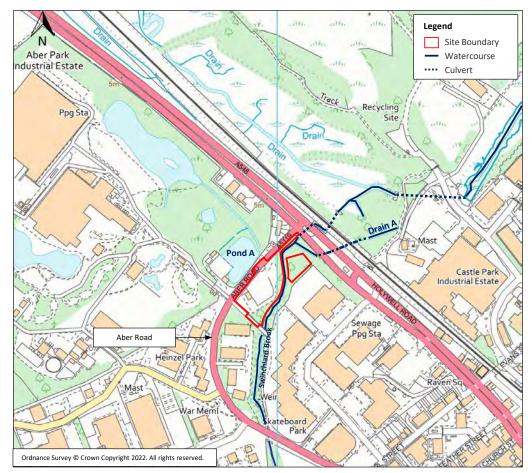


Figure 1: Site Location

2.2 Existing and Proposed Development

The site was previously occupied by a large industrial building (approximately 2,300 m²), with associated infrastructure, hardstanding and car parking. The building has since been demolished and the current hardstanding area is being used as a hand car wash facility, with a small building (approximately 210 m²) in the south-west. The existing site plan is provided in **Appendix A**.

The proposals comprise the construction of 6 commercial units with associated loading bays (equating to 2,173 m²), car parking and landscaping. Access to the site will continue to be provided via Aber Road to the north, with an additional access provided to the south. The proposed site plan is provided in **Appendix B**.

Please note, the isolated parcel of land to the north-east of the site shown in is proposed as a flood storage area.

TAN15 classifies general industry development as Less Vulnerable to flood risk.

2.3 Waterbodies in the Vicinity of the Site

Swinchiard Brook flows in a northerly direction along the eastern boundary of the site, before being culverted under Holywell Road (A548) and ultimately outfalling into the River Dee. The River Dee is located approximately 500 m to the north-east of the site.

Drain A flows in a south-westerly direction to the east of the site before outfalling into Swinchiard Brook approximately 35 m north-east of the site.

Pond A is located approximately 23 m north-west of the site beyond Aber Road.

The River Dee is classified as a main river, whilst Swinchiard Brook is an ordinary watercourse.

2.4 Topographic Levels

A topographic survey of the site was undertaken by Powers and Tiltman Ltd in 2010 (**Appendix C**) and LiDAR data has been used to develop a digital terrain model of the site and surrounding area as illustrated in **Figure 2**.

Site levels are shown to be in the region of 6.1 - 8.0 m AOD falling in a northerly direction.

Levels along Aber Road, adjacent to the site, are shown to rise from 6.4 m AOD at the site entrance to 7.4 m AOD to the south-west. Levels on the road along the south-western boundary of the site are between 7.4 - 8.1 m AOD.

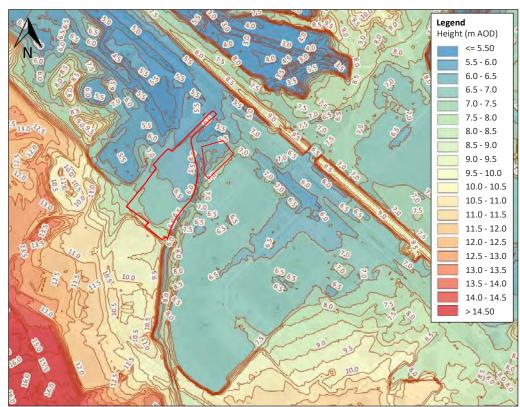


Figure 2: Digital Terrain Model from LiDAR Data

2.5 Ground Conditions

A geo-environmental assessment of the site was undertaken by Atkinson Peck Consulting Engineers in May 2008¹. The site investigation comprised five boreholes. The assessment reported ground conditions to comprise made ground (gravels, ash, sands, silts, clays) to typical depths of 2.3 - 2.6 m bgl, underlain by soft to firm brown sandy clay extending to between 3.3 - 6.0 m bgl with gravel recorded in some boreholes. Groundwater was recorded in all boreholes at depths ranging between 1.2 - 1.4 m bgl.

According to the Soilscapes soils dataset produced by the Cranfield Soil and AgriFood Institute², soil conditions at the site and within the surrounding area are slowly permeable, seasonally wet, slightly acid but base-rich loamy and clayey soils..

British Geological Survey mapping of surface geology³ indicates the underlying bedrock formation comprises of mudstone, siltstone and sandstone (Pennine Middle Coal Measures Formation), overlain by clay, silt and sands (Tidal Flat Deposits).

The British Geological Survey and Natural Resources Wales aquifer designation dataset⁴ classifies the clay, silt and sands superficial deposits at the site as a Secondary Undifferentiated aquifer whilst the underlying mudstone, siltstone and sandstone bedrock is classified as a Secondary A aquifer.

According to the Natural Resources Wales database⁵ the site is not shown to be located within a designated groundwater source protection zone.

¹ Site Investigation Report, Atkinson Peck Consulting Engineers, May 2008 (Ref. KM/C14157)

² www.landis.org.uk/soilscapes/

³ http://mapapps2.bgs.ac.uk/geoindex/home.html

⁴ Footnote 3

⁵ https://lle.gov.wales/catalogue/item/SourceProtectionZonesSPZMerged/?lang=en

3 PLANNING POLICY AND GUIDANCE

3.1 National Planning Policy and Guidance

Future Wales - the national Plan 2040 sets out the national development framework for Wales with a strategy for addressing key national priorities through the planning system, including sustaining and developing a vibrant economy, achieving decarbonisation and climate-resilience, developing strong ecosystems and improving the health and well-being of our communities.

Policy 8 - Flooding states that "flood risk management that enables and supports sustainable strategic growth and regeneration in National and Regional Growth Areas will be supported. The Welsh Government will work with Flood Risk Management Authorities and developers to plan and invest in new and improved infrastructure, promoting nature-based solutions as a priority. Opportunities for multiple social, economic and environmental benefits must be maximised when investing in flood risk management infrastructure. It must be ensured that projects do not have adverse impacts on international and national statutory designated sites for nature conservation and the features for which they have been designated".

Planning Policy Wales (PPW) sets out government's planning policies for Wales and how these are expected to be applied. TAN15 provides technical guidance which supplements the policy within PPW and seeks to ensure that flood risk is taken into account at all stages in the planning process and is appropriately addressed.

The general approach of TAN15 is to set out a precautionary framework to guide planning decisions in areas at high risk of flooding. The overarching aim of the framework is, in order of preference, to:

- Direct new development away from those areas which are at a high risk of flooding.
- Where development has to be considered in high risk areas (i.e. zone C) only those developments which can be justified should be located in such areas.

In accordance with paragraph 6 of TAN15, development will only be justified if it can be demonstrated that:

- i. Its location in zone C is necessary to assist, or be part of, a local authority regeneration initiative or a local authority strategy required to sustain an existing settlement; **or**,
- ii. Its location in zone C is necessary to contribute to key employment objectives supported by the local authority, and other key partners, to sustain an existing settlement or region;

and,

- iii. It concurs with the aims of PPW and meets the definition of previously developed land (PPW Figure 2.1); and,
- iv. The potential consequences of a flooding event for the particular type of development have been considered, and in terms of the criteria contained in sections 5 and 7 and appendix 1 found to be acceptable.

National policy requires that planning applications for new development proposals should incorporate sustainable drainage systems (SuDS) to appropriate operational standards and with maintenance arrangements in place unless there is clear evidence that this would be inappropriate.

Statutory standards for sustainable drainage were published by Welsh Government in October 2018⁶ in relation to the design, construction, operation and maintenance of sustainable drainage systems serving new developments of more than one house or where the construction area is equal to or greater than 100 m². These standards set out how surface water runoff generated during the present day 1 in 1, 1 in 30 and 1 in 100 annual exceedance probability (AEP) rainfall events and for events exceeding the present day 1 in 100 AEP event should be managed, how peak runoff rates should be restricted and how runoff volumes should

⁶ Statutory Standards for Sustainable Drainage Systems – designing, constructing, operating and maintaining surface water drainage systems (https://gov.wales/sites/default/files/publications/2019-06/statutory-national-standards-for-sustainable-drainage-systems.pdf)

be controlled. Approval is subsequently required from the SuDS Approval Body (SAB) before construction can commence.

3.2 Local Planning Policy and Guidance

The Flintshire Local Development Plan was adopted by Flintshire County Council in January 2023. The following policies are relevant in respect of flood risk and drainage:

Policy EN14; Flood Risk

In order to avoid the risk of flooding, development will not be permitted:

- a) in areas at risk of fluvial, pluvial, coastal and reservoir flooding, unless it can be demonstrated that the development can be justified in line with national guidance and is supported by a technical assessment that verifies that the new development is designed to alleviate the threat and consequences of flooding;
- b) where it would lead to an increase in the risk of flooding on the site or elsewhere from fluvial, pluvial, coastal or increased surface water run-off from the site;
- c) where it would have a detrimental effect on the integrity of existing flood risk management assets: or
- *d)* where it would impede access to existing and proposed flood risk management assets for maintenance and emergency purposes.

Policy EN15; Water Resources

Development affecting water resources will only be permitted if:

- a) it would not have a significant adverse impact on the capacity and flow of groundwater, surface water, or coastal water systems;
- b) it would not pose an unacceptable risk to the quality of groundwater, surface water, or coastal water; and
- c) it would have access to adequate water supply, sewerage and sewage treatment facilities which either already exist, or will be provided in time to serve the development, without detriment to existing abstractions, water quality, fisheries, amenity or nature conservation.

3.3 Water Framework Directive

The Water Framework Directive (WFD) provides a legal framework for the protection, improvement and sustainable use of inland surface waters, groundwater, transitional waters, and coastal waters across Wales, and seeks to:

- Prevent deterioration in the status of aquatic ecosystems, protect them and improve the ecological condition of waters
- Achieve at least 'good' status for all waterbodies by 2015
- Promote the sustainable use of water as a natural resource
- Conserve habitats and species that depend directly on water
- Progressively reduce or phase out the release of individual pollutants or groups of pollutants that present a significant threat to the aquatic environment
- Progressively reduce the pollution of groundwater and prevent or limit the entry of pollutants; and
- Contribute to mitigating the effects of floods and droughts.

The WFD applies to any proposed development which has the potential to impact on a waterbody. Where this is the case, Natural Resources Wales may require evidence demonstrating that the proposed development does not compromise the aims of the WFD.

3.4 Environmental Permitting and Land Drainage Consent

Under the Environmental Permitting (England and Wales) Regulations 2016 an Environmental Permit for Flood Risk Activities⁷ is required from Natural Resources Wales for any permanent or temporary works:

- In, over or under a designated main river
- Within 8 m of the top of bank of a designated main river or of the landward toe of a flood defence (16 m if it is a tidal main river or a sea defence).

In addition, any permanent or temporary works within the floodplain of a designated main river may also require an Environmental Permit for Flood Risk Activities. A permit is separate to and in addition to any planning permission granted.

Land drainage consent may be required from the lead local flood authority for work to an ordinary watercourse.

Undertaking activities controlled by local byelaws also requires the relevant consent.

⁷ https://naturalresources.wales/permits-and-permissions/environmental-permits/?lang=enhttps://www.gov.uk/guidance/flood-risk-activitiesenvironmental-permits

4 REVIEW OF FLOOD RISK

4.1 Historical Records of Flooding

The Natural Resources Wales historic flood outlines database⁸ indicates that flooding in the north and east of the site occurred in 2000 as a result of the Swinchiard Brook channel capacity being exceeded. No details have been made available to confirm flood levels during that event.

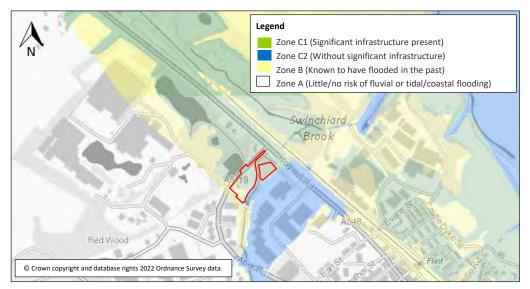

4.2 Flood Zone Designation

Figure 1 of TAN15 defines three development advice zones as follows:

- Zone A: Considered to be at little or no risk of fluvial or tidal/coastal flooding
- Zone B: Areas known to have been flooded in the past evidenced by sedimentary deposits
- Zone C: Based on [the Natural Resources Wales] flood outline, equal to or greater than 0.1% (river, tidal or coastal). Zone C is subdivided into the following two zones:
 - Zone C1: Areas of the floodplain which are developed and served by significant infrastructure, including flood defences
 - o Zone C2: Areas of the floodplain without significant flood defence infrastructure

The development advice zones are shown on the Development Advice Map⁹ and are defined by the predicted extent of the 1 in 1,000 (rivers and sea) AEP event (zone C) and British Geological Survey drift data (zone B).

The Development Advice Map (Figure 3) indicates that the majority of the site is located in zone C1 with an area in the south located in zone B.

Figure 3: Development Advice Map

Source: Natural Resources Wales website; Accessed: June 2022

4.3 Flood Risk from the Sea (Tidal / Coastal)

The DataMapWales indicates the presence of several tidal/coastal flood defence assets within the vicinity of the site. The corresponding asset information is provided in **Table 1**.

⁸ http://lle.gov.wales/catalogue/item/HistoricFl/?lang=en

⁹ https://naturalresources.wales/evidence-and-data/maps/long-term-flood-risk/?lang=en

Table 1: Existing Tidal / Coastal Flood Defence Information

Object ID	Asset Description	Crest Level (m AOD)	Condition
609	High ground with sections of stone revetment	7.60*	Fair
489	Embankment with gabion basket frontage	6.52	Very Good
603	High ground - old industrial waste site	7.23	Very Good
556	Trapazoidal clay ombankment with maconny revetment on the face in	6 26	Poor

556 Trapezoidal clay embankment with masonry revetment on the face in. 6.36 Poor * Indicates where LiDAR has been utilised to inform estimated crest level where detailed information is not available

According to the Environment Agency's Coastal Flood Boundary Conditions for the UK: 2018 Update¹⁰, the following modelled peak still tidal levels are expected adjacent to the site:

٠	1 in 200 (2017) AEP event	6.42 m AOD
٠	1 in 1,000 (2017) AEP event	6.63 m AOD

TAN15 requires an allowance for climate change to be made. Using the allowance set out in Welsh Government guidance¹¹ and a development lifetime of 75 years, this allowance has been calculated as 0.66 m (70th Percentile; 70P) and 0.90 m (95th Percentile; 95P) for the year 2097. It is noted that this should ideally be for the year 2098; however, the associated hydraulic modelling to assess flood risk from this source (as discussed below) was undertaken in 2022 and the additional year of climate change is considered to be negligible. The peak still tidal level for the 1 in 200 AEP event plus climate change (2097) is therefore estimated to be 7.08 m AOD (70P) and 7.32 m AOD (95P), whilst the 1 in 1,000 AEP event plus climate change (2097) is 7.29 m AOD (70P) and 7.53 m AOD (95P).

The Welsh Government climate change guidance is based on UK Climate Projections (UKCP18) data and states "as a minimum, development proposals should be assessed against the relevant regional 70th percentile... to inform design levels. An assessment should also be made against the 95th percentile to inform mitigation measures, access and egress routes and emergency evacuation plans".

Overtopping and breach of the of the River Dee tidal/coastal flood defences was assessed by Natural Resources Wales as part of the Flint Point to Greenfield Initial Assessment Study (January 2015) utilising a 1D-2D Estry-TUFLOW hydraulic model, which includes the site. However, the tidal levels and climate change allowances utilised within the study are based on now superseded datasets/information.

In order to account for the latest peak still tidal levels and climate change allowances, overtopping and breach of the existing flood defences has subsequently been assessed by Weetwood as part of the River Dee (Tidal) Hydraulic Modelling Study (April 2023) (**Appendix D**) for the 1 in 200 and 1 in 1,000 AEP events plus climate change (2097 - 70P and 95P¹²).

The modelled overtopping and breach outputs are provided in Figure 4 and Figure 5 respectively.

Table 2 and **Table 3** summarise the maximum level, depth and velocity of floodwaters expected at the site during the aforementioned overtopping and breach scenarios.

The proposed access to the north of the site immediately off Aber Road is expected to flood during all modelled tidal events. However, the south-western boundary of the site which leads to Aber Road remains dry in all modelled tidal events.

¹⁰ https://data.gov.uk/dataset/73834283-7dc4-488a-9583-a920072d9a9d/coastal-design-sea-levels-coastal-flood-boundary-extreme-sea-levels-2018

¹¹ Flood Consequences Assessments: Climate Change Allowances - https://gov.wales/sites/default/files/publications/2021-09/climate-changeallowances-and-flood-consequence-assessments_0.pdf

¹² The River Dee tidal model was initially run by Weetwood in December 2022, as such climate change was considered to the year 2097. Accounting for the additional increase to the year 2098 would result in a 0.012 m increase in peak still tidal levels, and as such is unlikely to have any material impact on modelled flood levels on site when compared to the year 2097.

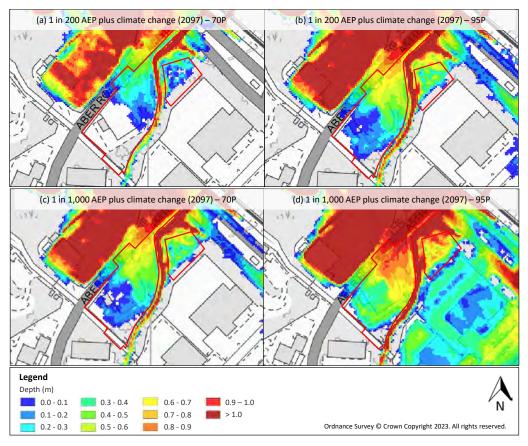


Figure 4: River Dee (Tidal) Modelled Flood Extents (Baseline) - Overtopping Source: River Dee Hydraulic Modelling Study, Weetwood, April 2023

Table 2: Site Flood Information - Tidal Overtopping (Baseline)

Source: River Dee Hydraulic Modelling Study, Weetwood, April 2023

AED Event	Max Level	Max Depth (m)		Max Velocity (m/s)	
AEP Event	(m AOD)	Highest	Mean	Highest	Mean
1 in 200 plus climate change (2097 - 70P)	6.56	0.55	0.21	0.62	0.06
1 in 1,000 plus climate change (2097 - 70P)	6.83	0.93	0.30	0.82	0.07
1 in 200 plus climate change (2097 - 95P)	6.86	0.96	0.32	0.85	0.08
1 in 1,000 plus climate change (2097 - 95P)	7.13	1.23	0.55	0.94	0.15

n.b. The above table ignores areas of land where no development is proposed, such as the proposed flood storage area.

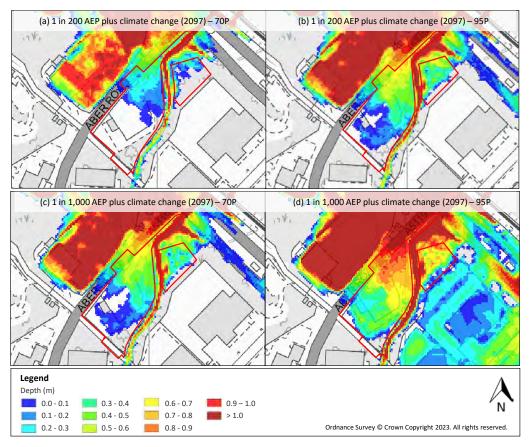


Figure 5: River Dee (Tidal) Modelled Flood Extents (Baseline) - Breach Source: River Dee Hydraulic Modelling Study, Weetwood, April 2023

Table 3:	Site Flood	Information	- Tidal	Breach	(Baseline)
----------	------------	-------------	---------	--------	------------

Source: River Dee Hydraulic Modelling Study, Weetwood, April 2023

AEP Event	Max Level (m	Max Depth (m)		Max Velocity (m/s)	
ALP EVEN	AOD)	Highest	Mean	Highest	Mean
1 in 200 plus climate change (2097 - 70P)	6.51	0.51	0.18	0.60	0.05
1 in 1,000 plus climate change (2097 - 70P)	6.78	0.88	0.29	0.81	0.08
1 in 200 plus climate change (2097 - 95P)	6.82	0.91	0.30	0.83	0.08
1 in 1,000 plus climate change (2097 - 95P)	7.11	1.21	0.53	1.00	0.16

n.b. The above table ignores areas of land where no development is proposed, such as the proposed flood storage area.

4.4 Flood Risk from Rivers (Fluvial)

A 1D-2D Flood Modeller-TUFLOW hydraulic model of Swinchiard Brook has been developed by Weetwood as part of the Swinchiard Brook Hydraulic Modelling Study (June 2023) (**Appendix E**). This assesses the risk of flooding from Swinchiard Brook for the present day 1 in 100 and 1 in 1,000 AEP events, the 1 in 100 AEP event plus climate change (20% - central estimate¹³), and in order to future-proof the site the 1 in 1,000 AEP event plus climate change (20% - central estimate) has also been assessed. In addition, a 25% and 80% blockage of the downstream bridge structure, located underneath Holywell Road (A548) approximately 50 m north-east of the site, has been simulated for the present day 1 in 1,000 AEP event, the 1 in 100 AEP event plus climate change (20% and 45%) and the 1 in 1,000 AEP event plus climate change (20%).

During all modelled free flowing scenarios, floodwater enters the site via two mechanisms; a very shallow overland flow route from the south-western corner of the site, as well as directly from Swinchiard Brook overtopping its banks in the north of the site. It should be noted that the maximum flood level of circa. 7.40 m AOD indicated for most scenarios within

Table 4 accounts for the very shallow flow route in the south-western corner of the site where ground levels are higher and does not represent typical flood levels within the site for the respective scenarios.

When accounting for a blockage of the downstream bridge structure, flood depths within the site are not shown to significantly increase.

Shallow flooding of Aber Road is expected during all modelled fluvial events. In all modelled fluvial events up to the 1 in 1,000 AEP event plus climate change (20%) depths are not indicated to exceed 0.2 m to the north of the site and 0.1 m to the south-east of the site. In the 1 in 1,000 AEP event plus climate change (20%) flood depths up to 0.5 m may be expected in the north of the site; however depths are still expected to remain below 0.1 m in the south of the site. In all modelled events the access road along the south-western boundary of the site remains dry.

Table 4 summarises the maximum level, depth and velocity of floodwaters expected at the site during theaforementioned scenarios. The modelled free flowing and bridge blockage outputs are provided in Figure 6and Figure 7 respectively.

¹³ As detailed in Section 5.2 of Appendix E, the 1 in 100 AEP plus climate change (45% - upper end estimate) model run did not complete it's simulation. For the purposes of this assessment, this scenario is not considered to have any bearing on proposed flood mitigation measures given that the site will be mitigated against the more extreme blockage scenario.

Cooncrie	AEP Event M	Max Level Max Dept		Max Level	pth (m)	Max Veloc	ity (m/s)
Scenario	ALPEVEN	(m AOD)	Highest	Mean	Highest	Mean	
	Present day 1 in 100	6.11 - 7.39	0.51	0.09	0.51	0.13	
Quarterriter	1 in 100 +20% climate change	6.13 - 7.40	0.56	0.12	0.55	0.16	
Overtopping	Present day 1 in 1,000	6.13 - 7.40	0.62	0.16	0.77	0.19	
	1 in 1,000 +20% climate change	6.32 - 7.40	0.66	0.19	0.88	0.23	
	1 in 100 +20% climate change	6.19 - 7.40	0.58	0.14	0.69	0.17	
Bridge Blockage	1 in 100 +45% climate change	6.19 - 7.40	0.61	0.15	0.78	0.19	
(25%)	Present day 1 in 1,000	6.19 - 7.41	0.63	0.17	0.83	0.20	
	1 in 1,000 +20% climate change	6.33 - 7.41	0.66	0.19	0.86	0.23	
	1 in 100 +20% climate change	6.24 - 7.40	0.62	0.16	0.87	0.19	
Bridge Blockage	1 in 100 +45% climate change	6.28 - 7.40	0.65	0.18	0.87	0.20	
(80%)	Present day 1 in 1,000	6.32 - 7.41	0.67	0.19	0.88	0.21	
	1 in 1,000 +20% climate change	6.33 - 7.41	0.71	0.21	0.89	0.23	

Table 4: Site Flood Information (Baseline) Source: Source: Swinchiard Brook Hydraulic Modelling Study, Weetwood, April 2023

n.b. The above table ignores areas of land where no development is proposed, such as the proposed flood storage area.

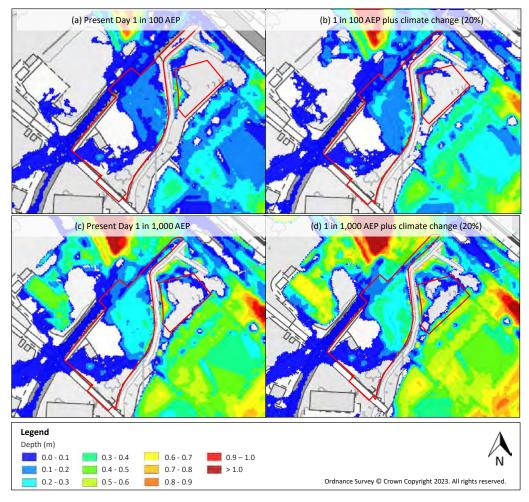
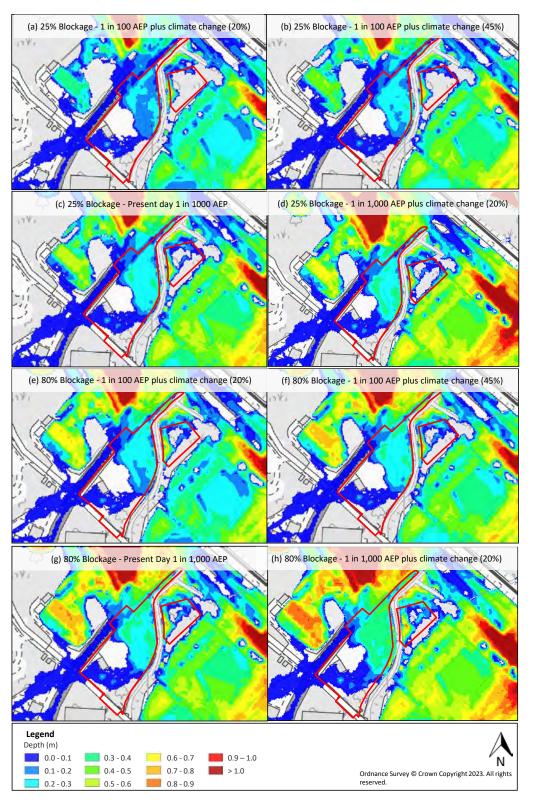
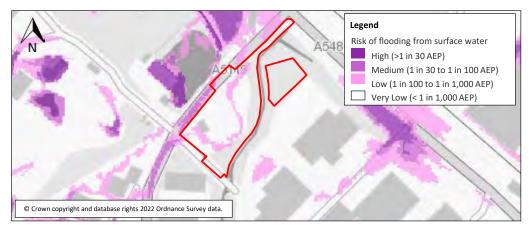
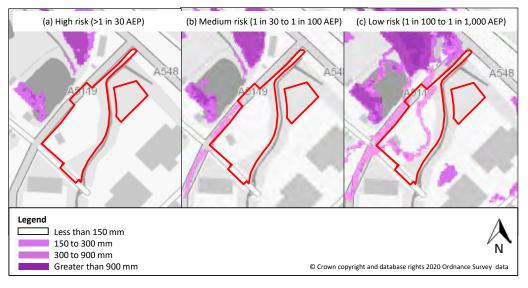


Figure 6: Swinchiard Brook Modelled Flood Extents (Baseline) - Free Flowing Source: Source: Swinchiard Brook Hydraulic Modelling Study, Weetwood, April 2023




Figure 7: Swinchiard Brook Modelled Flood Extents (Baseline) - Bridge Blockage Source: Swinchiard Brook Hydraulic Modelling Study, Weetwood, April 2023


4.5 Flood Risk from Surface Water (Pluvial) and Small Watercourses

The Flood Risk from Surface Water and Small Watercourses map (**Figure 8**) indicates that the majority of the site is at a Very Low risk of flooding from surface water, with an area through the centre being at Low risk. The depth and velocity of floodwater at the site during the low risk event is typically not expected to exceed 0.3 m and 1 m/s respectively.

Aber Road is shown to be at a Low to Medium risk of flooding from surface water adjacent to the site; however, the extent of flooding is relatively confined, with depths and velocities typically not expected to exceed 0.3 m and 1 m/s respectively.



(a) Extent

(b) Depth

(c) Velocity

Figure 8: Flood Risk from Surface Water and Small Watercourses

Source: Natural Resources Wales website; Accessed: April 2023

4.6 Flood Risk from Reservoirs, Canals and Other Artificial Sources

As outlined in **Section 2.3**, Pond A is located approximately 23 m north-west of the site beyond Aber Road. LiDAR data indicates that ground levels fall northwards away from the pond and the site (as evidenced in **Figure 8**). As such this is not considered to pose a risk of flooding to the proposed development.

There are no canals or other impounded waterbodies located within the immediate vicinity of the site. The Reservoir Flood Risk map indicates that the site is not at risk of flooding from such sources.

4.7 Flood Risk from Groundwater

The JBA Groundwater Flood Risk Indicator map (not shown) indicates that the site and surrounding area are at a negligible risk of flooding in a 1 in 100 AEP groundwater flood event.

However, as detailed in **Section 2.5**, the site investigations undertaken by Atkinson Peck Consulting Engineers in May 2008 recorded groundwater in all boreholes at the site at depths ranging between 1.2 - 1.4 m bgl. As such there may be a residual risk of flooding from this source.

4.8 Justification Test

The proposals to develop 6 commercial units on the site should help contribute to key employment objectives within the local area. This meets part ii of the Justification Test.

The site is previously developed, meeting part iii of the test.

It should be noted that TAN15 states some flexibility in the application of the Justification Test is necessary to enable the risks of flooding to be addressed whilst recognising the negative economic and social consequences if policy were to preclude investment in existing urban areas, and the benefits of reusing previously developed land.

This FCDA addresses part iv of the test.

5 FLOOD RISK MITIGATION MEASURES

The risk of flooding to the proposed development from all identified sources is assessed to be low, with the exception of the River Dee (tidal/coastal) and Swinchiard Brook (fluvial). The risk of flooding to the proposed development will be mitigated through the implementation of the measures proposed within the following section of this report.

Note, to inform the proposed mitigation measures, proposed scenario flood modelling has been undertaken in order to account for changes to flood levels (during fluvial flooding scenarios) on site as a result of reprofiling ground levels.

5.1 Finished Floor Levels

For Building A (**Appendix B**), finished floor levels should be set at a minimum of 7.13 m AOD. This is the flood level expected at the site during the modelled tidal 1 in 1,000 AEP overtopping event plus climate change (2097 - 95P) and provides a freeboard of 570 mm above the flood level expected at the site in a tidal 1 in 200 AEP overtopping event plus climate change (2097 - 70P). This finished floor level is also 360 mm above the modelled flood levels adjacent to Building A during the proposed scenario fluvial 1 in 1,000 AEP event plus (20%) climate change (i.e. the level of the shallow overland flow route once the site has been reprofiled).

For Building B (**Appendix B**), finished floor levels should be set slightly higher, at a minimum of 7.16 m AOD, to mitigate the very shallow overland flow route that enters the site during fluvial scenarios. The fluvial flood level within the vicinity of Building B is essentially very similar for all AEP events but the proposed finished floor level aims to keep the building dry during all modelled events.

In accordance with Building Regulations Approved Document C10, finished floor levels of buildings should be set at a minimum of 0.15 m above adjacent ground levels, sloping down from the buildings, following reprofiling of the site.

This will, subject to the implementation of an appropriately designed surface water drainage scheme, enable any potential overland flows to be conveyed safely across the site without affecting property.

5.2 Development Platform

Ground levels on all ancillary areas are proposed to range from 6.50 to 8.05 m AOD falling in a north-westerly direction (refer to **Appendix F**). Given that flood levels during the tidal 1 in 200 AEP overtopping event plus climate change (2097 - 70P) are modelled to be 6.56 m AOD the proposed site would largely be dry with minor flooding of up 0.06 m around the entrance where ground levels are proposed to be lowest in order to tie in with existing highway levels. During the fluvial 1 in 100 AEP bridge blockage event plus climate change (20%) typical maximum flood depths of 0.06 m would be expected.

As outlined within the Natural Resources Wales Operational Guidance Note; Flooding to ancillary areas dated January 2018, flooding to areas intended for non-residential development should be avoided where possible.

However, where this is not possible to achieve, Natural Resources Wales state that it may not choose to object to a development where the developer has shown within the FCA that the risks are manageable and the anticipated flooding meets the criteria below. In this case, this would apply to both the tidal 1 in 200 plus climate change (2097) AEP event and the fluvial 1 in 100 AEP bridge blockage event plus climate change (20%) in order to comply with A1.14 of TAN15.

1. All properties/buildings are designed to be flood free.

This will be achieved as above.

2. Flood depths to 'ancillary areas' do not exceed 300 mm.

This will be achieved as above.

3. The flood hazard rating is no greater than 'very low' in accordance with the established DEFRA FD2320

hazard guidance. Flood hazard greater than this may result in an unacceptable risk (dependant on the type/location of the development proposal).

The flood Hazard Ratings within the proposed platform have been calculated to be 'very low' during all design events, even when assuming a conservative debris factor of 0.5 (which is unlikely for such shallow flooding).

4. There is no risk of increased flooding elsewhere.

Refer to the Section 5.5 below.

The proposed levels will also ensure that the proposed development complies with A1.15 of TAN15 during a tidal 1 in 1,000 AEP overtopping/breach event plus climate change (2097 - 70P) and fluvial 1 in 1,000 AEP bridge blockage event, as maximum flood depths on site are far less than 1 m.

5.3 Flood Plan

It is recommended that a Flood Warning and Evacuation Plan is prepared in consultation with Flintshire County Council emergency planning team. The site is included in a Natural Resources Wales flood alert and warning area. This provides the opportunity for the relevant response procedures set out in the plan to be invoked in response to receipt of a flood warning from Natural Resources Wales

5.4 Flood Risk Elsewhere

In accordance with A1.2 of TAN15 developers must ensure there will be no loss of flood flow or flood storage capacity for floods up to the severity of the 1 in 1,000 AEP event. Whilst not specified by TAN15, Natural Resources Wales generally recommends that this should be the case over the lifetime of development (i.e. should take into account climate change) and should consider breach and blockage where necessary.

Compensatory storage is generally not required for the loss of floodplain storage or conveyance during a tidally dominated event. However, in such instances where overtopping of defences is expected by tidal floodwaters, and the predicted water level is not an extension of the water level within the estuary then the developer should demonstrate no increase in flood risk.

In order to assess the impact on flood risk elsewhere, the development proposals have been incorporated within both the River Dee and Swinchiard Brook hydraulic models. Given that the mechanisms of flooding are different during fluvial and tidal scenarios, it was decided to incorporate the proposals into the respective models in slightly different ways. It was considered necessary to incorporate the proposed site levels (as detailed in **Section 5.2** and illustrated in **Appendix F**) accurately within the Swinchiard Brook hydraulic model owing to the overland flow entering the site from the south-west; whereas, a more simplistic and conservative approach was taken for tidal flood risk by raising the development platform arbitrarily high, which is considered to assess a worst case scenario in terms of displacing the tidal floodwater.

Compensatory flood storage has also been included within both hydraulic models and is provided in the form of an approximately 1,600 m² area to the east of the site (**Figure 9**), where ground levels have been set to 5.76 m AOD.

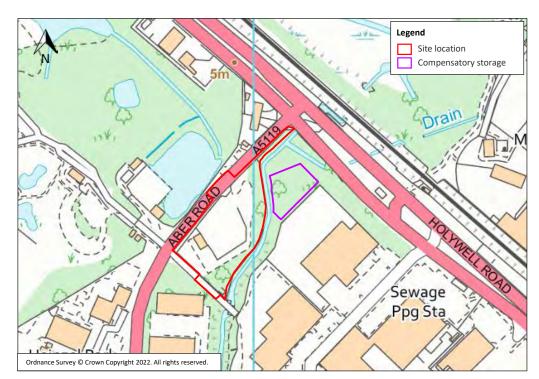


Figure 9: Location of Proposed Compensatory Storage

Model flood risk comparison plots are provided in **Appendix G** and indicate that during the tidal 1 in 200 and 1 in 1,000 AEP overtopping and breach events plus climate change (2097 - 70P) there is no increase in flood risk elsewhere.

During the fluvial 1 in 100 AEP event plus climate change (20%) and 1 in 1,000 AEP event plus climate change (20%), and all modelled bridge blockage scenarios, no significant increase in flood risk elsewhere is indicated by the modelling. For many of these scenarios, the hydraulic modelling study indicates that fluvial flooding is reduced to large adjacent areas of built development. Consequently, in some instances floodwater is slightly increased by less than 100 mm to some undeveloped woodland and marshy areas (primarily immediately to the north-east of the site and to the north-east of the railway); these areas are already shown to flood with typical maximum depths ranging from 1.12 to 1.60 m. Therefore, considering the depths of flooding that would ordinarily occur and the existing land use types in those areas, the increased flooding is considered to be immaterial, particularly when noting that in many scenarios this is at the expense of providing betterment to areas of existing built development. It is noted that there is shown to be a small area of increased flooding to a rear garden of some residential development 25 m to the north of the site during the 1 in 1,000 AEP event plus climate change including an 80% bridge blockage; however, this is indicated to be an 8 mm increase for what is a very extreme event only, and this area already floods to a typical maximum depth of 600 mm during this scenario. Moreover, this same area is either not shown to be adversely impacted during other modelled events, or reduced flood risk shown to the same area during the more-likely free-flowing scenarios.

Given the above, in the context of wide-scale flood risk betterment to existing built development at the expense of some relatively small increases in flooding primarily to woodland and marshy areas, on balance, the proposals are not considered to adversely impact flood risk elsewhere.

6 SURFACE WATER MANAGEMENT

The drainage assessment presented below was completed prior to the hydraulic modelling work set out within the previous sections of this report, while minor alterations to the site layout may have occurred, these have been considered and is not deemed to have altered the principles of this assessment.

6.1 Surface Water Drainage at the Existing Site

No on site drainage details are currently available, however, several inspection chambers and gullies are noted to be present on site (refer to **Appendix C**). Dŵr Cymru Welsh Water Public sewer records (**Appendix H**) indicate a 225 mm diameter surface water sewer flowing in a north-westerly direction within Aber Road, prior to discharging into Swinchiard Book, north of the site.

The site has a total area of 0.667 ha of which 0.207 ha currently comprises impermeable areas and 0.460 ha permeable areas.

The greenfield runoff rate for the site has been calculated using the ICP SUDS method within MicroDrainage. Runoff rates from existing impermeable areas have been calculated using the Modified Rational Method. Details of the input parameters and the output results are provided in **Appendix I** and **Appendix J** respectively.

The runoff rates from the existing site are presented in Table 5.

Table 5: Peak Runoff Rate - Existing Site

AEP of rainfall event	Permeable Runoff Rate 0.460 ha (I/s)	Impermeable Runoff Rate 0.207 ha (l/s)	Total (l/s)
1 in 1	2.3	15.4	17.7
QBAR / 1 in 2	2.6	19.9	22.5
1 in 30	4.6	37.6	42.2
1 in 100	5.7	48.4	54.1

6.2 Surface Water Drainage at the Redeveloped Site

6.2.1 Disposal of Surface Water (Standard S1)

In accordance with Welsh Government guidance¹⁴, surface water runoff should be disposed of according to the following hierarchy: Rainwater collected for use; Into the ground (infiltration); To a surface water body; To a surface water sewer or highway drain; To a combined sewer.

As part of the drainage strategy on site, a rainwater harvesting system could be considered to collect nonpotable water for reuse where possible. However, the incorporation of rainwater harvesting systems will require pumped systems. In accordance with the principles of the Statutory Standards for SuDS, the use of pumping should be avoided where possible. Therefore, Priority Level 1 has been discounted as the primary method for disposal of surface water.

As detailed in **Section 2.4** the site is underlain by soils with impeded drainage. As such the disposal of surface water via infiltration is unlikely to be feasible; however, infiltration tests have not been undertaken at this stage. Such tests should be undertaken at the detailed design stage in accordance with the guidelines in BRE365¹⁵.

In the event that infiltration is not a practicable method for the disposal of surface water (Priority Level 2), it is subsequently proposed to direct all runoff from the redeveloped site to Swinchiard Brook in accordance with Priority Level 3.

¹⁴ Footnote 6

¹⁵ BRE Digest 365 Soakaway Design, Building Research Establishment, 2016

6.2.2 Post Development Impermeable Area

The area of impermeable surfaces within the proposed development has been calculated to be 0.532 ha, based on the development proposals presented in **Appendix B**.

6.2.3 Peak Flow Control (Standard S2)

Paragraph G2.24 of the Statutory Standards for SuDS states that 'for previously developed sites, site runoff rates should be reduced to the greenfield rates wherever possible' with betterment of at least 30% considered as a minimum requirement.

It is proposed to restrict surface water runoff to the greenfield QBAR rate of 3.0 l/s post development.

6.2.4 Volume Control (Standard S2)

Where reasonably practicable, for sites which have been previously developed, the runoff volume from the proposed development to any highway drain, sewer or surface water body in the 1 in 100 AEP, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

As outlined within the CIRIA SuDS Manual 2015 extra runoff volumes in extreme events may be managed by releasing all runoff (above the 1 in 1 AEP event) from the site at a maximum rate of 2 l/s/ha or QBAR, whichever is the higher value.

It is proposed to restrict peak discharge rates to the greenfield QBAR rate in up to the 1 in 100 AEP event, including an allowance for climate change. This will minimise the impact of the increase in the volume of surface water discharged from the site.

6.2.5 Attenuation Storage

Attenuation storage will be provided to restrict surface water runoff generated across roofs and hardstanding.

The attenuation storage facility has been modelled using the Network module of MicroDrainage (**Appendix K**). The required storage volume has been sized to store the 1 in 100 AEP rainfall event including a 30% increase in rainfall intensity to allow for climate change.

Assuming a peak discharge rate of 3.0 l/s, a total storage volume of 410.5 m³ would be required. The storage volume could be accommodated within the pipe network, a filter drain, various locations of permeable pavement sub-bases and a geo-cellular storage tank, with an area of 975.0 m² and a depth of 0.4 m.

A preliminary surface water drainage layout is provided in **Appendix L**.

6.2.6 Exceedance Routes

Flows resulting from rainfall in excess of the 1 in 100 AEP rainfall event including an allowance for climate change will be managed in exceedance routes. It is assumed that as the development proposals progress, the design of the site would ensure flood flows are directed away from built development.

6.2.7 Water Quality and Pollution Control (Standard S3)

The CIRIA SuDS Manual¹⁶ and Table G3.1 of the Statutory Standards for SuDS identifies commercial roofs and delivery areas as having a low to medium pollution hazard level. Table 26.2 of the CIRIA SuDS Manual 2015 indicates that the pollution hazard indices associated with commercial roofs and delivery areas for total suspended solids, hydrocarbons and metals are 0.30, 0.20 and 0.05 and 0.7, 0.6 and 0.7 respectively.

¹⁶ Table 26.2

Table 26.3 of the CIRIA SuDS Manual indicates that the SuDS mitigation indices for filter drains and permeable paving for total suspended solids, hydrocarbons and metals are 0.4, 0.4 and 0.4 and 0.70, 0.60 and 0.70 respectively. The use of filter drains and permeable block paving will also help prevent debris from entering the surface water drainage system, reducing the risk of blockage.

In addition, a Class 1 bypass separator, along with catchpit manholes and silt traps in gullies/channels drains, will help prevent contaminants discharging into the downstream receptor.

6.2.8 Amenity and Biodiversity (Standard S4 and Standard S5)

The proposed layout includes landscaped areas/trees in a number of locations which will provide aesthetic benefits and interception of water surface, thus helping with volume control (via evapotranspiration).

It is generally recommended that native vegetation is used to maximise the biodiversity value of these areas. However, it may be valuable to include some non-native vegetation to support pollinators, such as butterflies and bees.

The implementation of soft landscaping will also help provide users of the site with health and wellbeing benefits.

6.2.9 Adoption and Maintenance of SuDS (Standard S6)

SuDS elements which serve one property will be the responsibility of the owner of the property.

SuDS elements which serve more than one property will be adopted and maintained by the SuDS Approving Body, in accordance with the Statutory Standards for SuDS.

An indicative maintenance schedule is presented in Table 6.

Schedule	Required action	Frequency
Permeable Paving		
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations.
Occasional	Stabilise and mow contributing and adjacent areas	As required
maintenance	Removal of weeds or management using glyphosphate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
Remedial actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving	
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required
Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/or weed growth- if required, take remedial action	Three-monthly, 48h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies accumulation rates and establish appropriate removal frequencies	Annually

 Table 6: Maintenance Requirements

Schedule	Required action	Frequency				
	Monitor inspection chambers					
Geo-cellular attenuation storage tank						
Regular	Inspect and identify any areas that are not operating correctly	Monthly for 3 months, then annually				
maintenance	Remove debris from the catchment surface	Monthly				
	Remove sediment from internal forebays	Annually, or as required				
Remedial action	Repair inlet/outlet and vents	As required				
	Inspect catchpit manholes and note rate of sediment accumulation	Monthly in the first year and then annually				
Monitoring	Inspect inlet/outlet and vents to ensure that they are in good condition and operating as designed	Annually				
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years, or as required				
Filter Drain						
Regular maintenance	Remove litter including leaf litter and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required)				
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly				
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly				
	Remove sediment from pre-treatment devices	Six monthly (or as required)				
Occasional maintenance	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required				
	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly (or as required)				
	Clear perforated pipework of blockages	As required				
Flow Control Unit						
Routine maintenance	Remove litter and debris and inspect for sediment accumulation	Six Monthly				
	Remove sediment from sump	As necessary – Indicated by system inspections				
Remedial actions	Replace malfunctioning parts or structures	As required				
Monitoring	Inspect for evidence of poor operation	Six Monthly				
	Inspect flow control unit and establish appropriate replacement frequencies	Six Monthly				
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first year of operation, then every six months				

7 FOUL WATER MANAGEMENT

Dŵr Cymru Welsh Water Public sewer records (**Appendix H**) indicate that a 225 mm diameter public foul gravity sewer is present adjacent to the north-western site boundary, which feeds into a pumping station (Ref: 2848 Aber Road Flint).

It is proposed to discharge foul flows from the site to the final manhole of the 225 mm diameter public foul sewer before the pumping station (Ref: SJ23739450).

8 SUMMARY AND RECOMMENDATION

This report has been prepared on behalf of HMG (Aber Road) Limited and relates to the proposed redevelopment of land off Aber Road, Flint for industrial use.

According to the Development Advice Map the majority of the site is located within zone C1 with an area in the south located within zone B.

The risk of flooding to the proposed development from all identified sources is assessed to be low, with the exception of the River Dee (tidal/coastal) and Swinchiard Brook (fluvial).

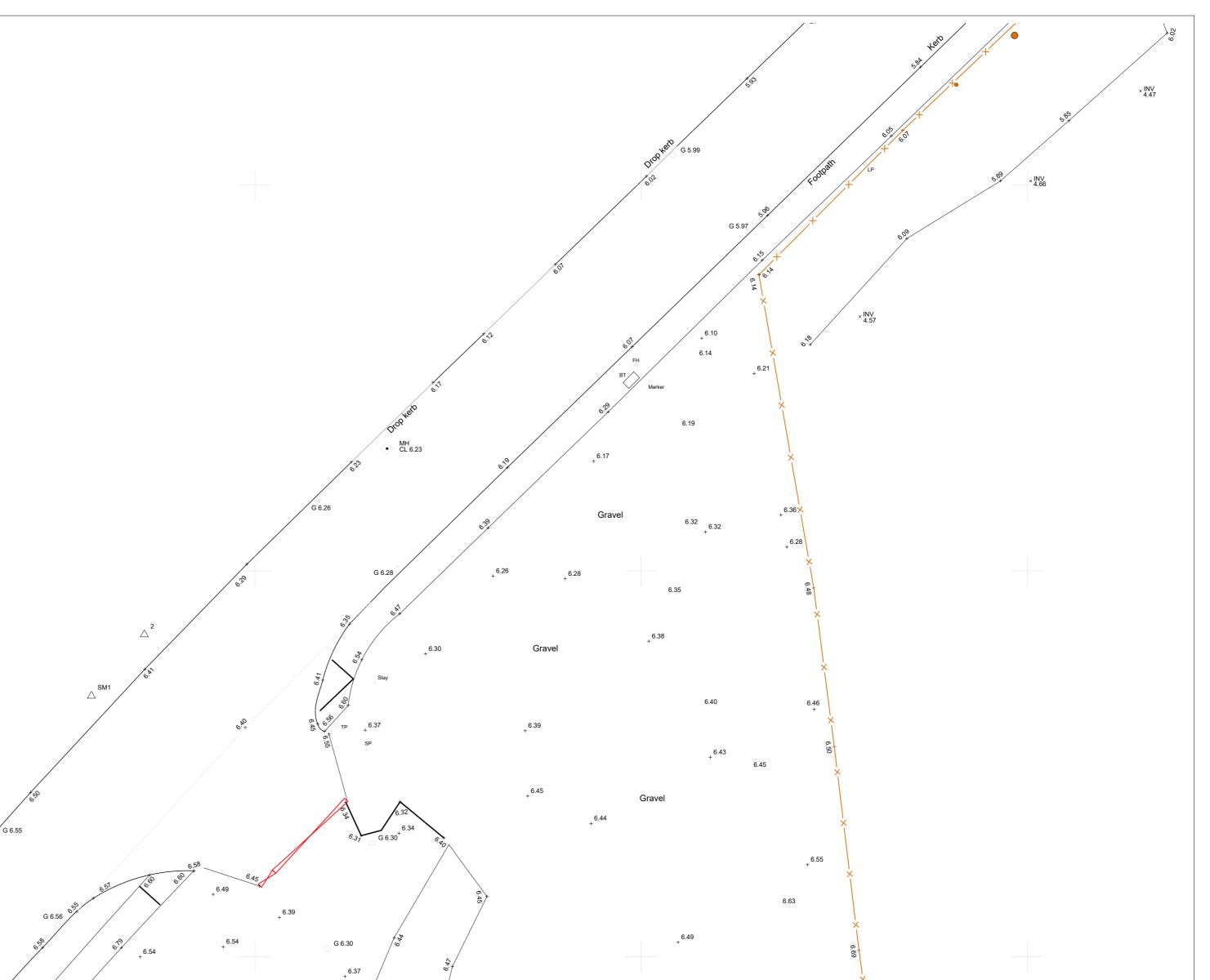
The assessment demonstrates that the proposed development may be completed in line with planning policy subject to the following measures:

- Finished floor levels to be set at a minimum of 7.13 m AOD and 7.16 m AOD for building A and building B respectively, and at least 0.15 m above adjacent ground levels following any reprofiling of the site, with ground levels sloping down from the buildings.
- Levels of all ancillary areas to be set as illustrated on the plan provided in Appendix E
- Compensatory storage to be provided to the north-east of the site in the form of a 1,600 m² area of land lowered to a level of 5.76 m AOD.
- Flood Warning and Evacuation Plan to be developed in consultation with Flintshire County Council

The proposals are considered to contribute to key employment objectives within the local area, in addition, the site has been previously developed. The proposals are therefore considered to meet parts ii and iii of the justification test.

The proposed development is not expected to have a significant detrimental impact on flood risk elsewhere when compared to the existing situation, with overall reduced flooding shown to existing built development nearby.

Surface water runoff from the redeveloped site can be sustainably managed in accordance with planning policy.


It is proposed to discharge foul flows from the development to the existing 225 mm diameter public foul gravity sewer adjacent to the north-western site boundary.

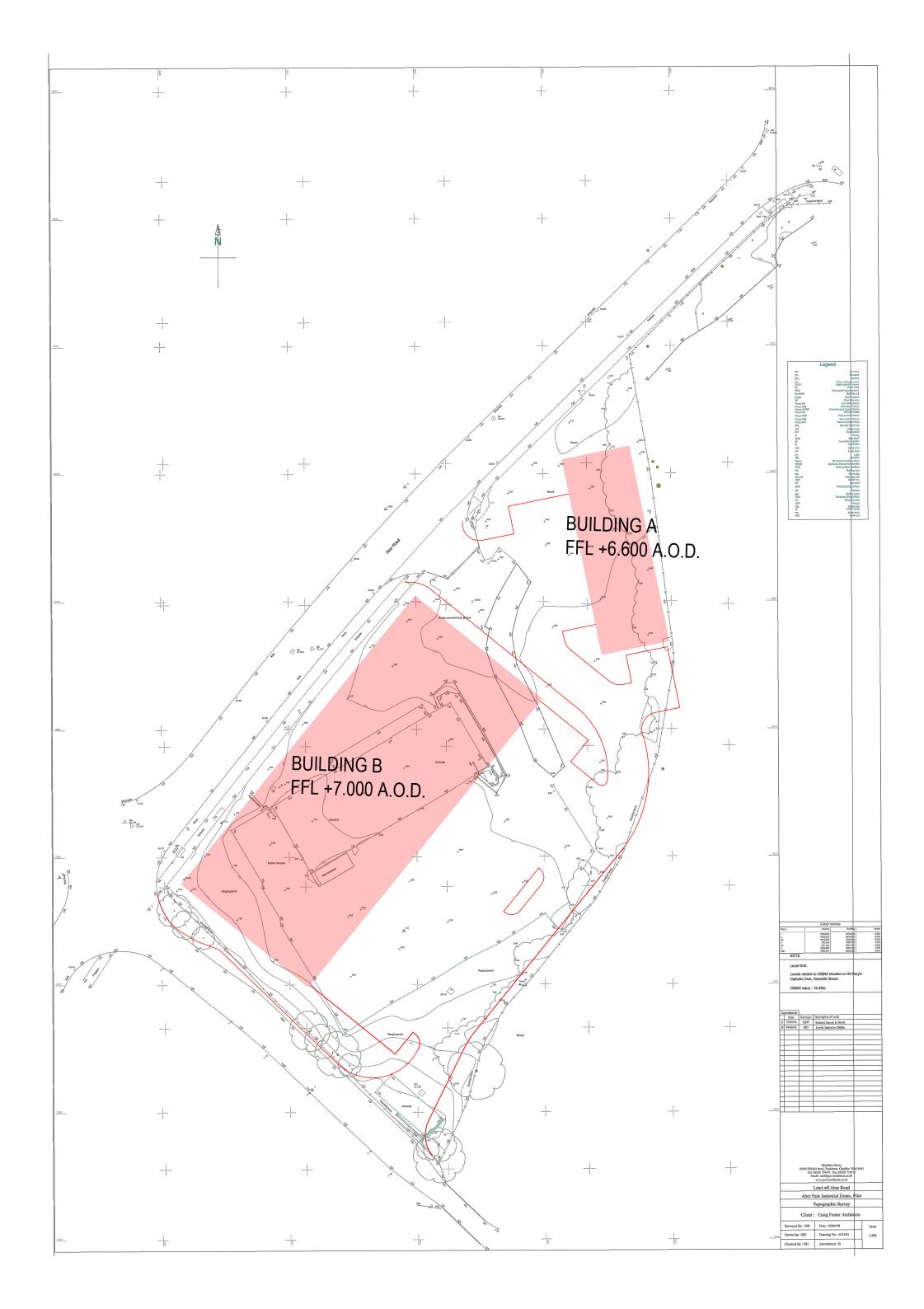
APPENDIX A

Existing Site Plan

- ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE.
- ANY DISCREPANCIES ARE TO BE REPORTED TO CUBE ARCHITECTURE AND DESIGN BEFORE ANY WORK COMMENCES.
- THIS DRAWING SHALL NOT BE SCALED TO ASCERTAIN ANY
 DIMENSIONS. WORK TO FIGURED DIMS ONLY.
- THIS DRAWING SHALL NOT BE REPRODUCED WITHOUT EXPRESS WRITTEN PERMISSION FROM CUBE ARCHITECTURE AND DESIGN.
- TITLE OVERLAY DRAWINGS AND OWNERSHIP BOUNDARIES ARE PRODUCED USING ALL REASONABLE ENDEAVOURS. CUBE ARCHITECTURE AND DESIGN CANNOT BE RESPONSIBLE FOR THE ACCURACY OR SCALE DISCREPANCY OF BASE PLANS SUPPLIED TO THEM.

APPENDIX B

Proposed Site Plan


- binder course and sub-base as per S.E. specification
- on a suitable binder course and sub-base as per S.E. specification. Build up to be suitable for HGV's, new road levels to match and feather in to existing at bellmouths.
- exposed areas
- landscape consultant details / specifications to incorporate native species planting.

APPENDIX C

Topographic Survey

APPENDIX D

River Dee (Tidal) Hydraulic Modelling Study Technical Note, May 2023

(5560/TN/Final/v1.0/2023-05-22)

Aber Road, Flint

River Dee (Tidal) Hydraulic Modelling Study

Technical Note

Project ref: Prepared by:	5560 – Aber Road, Flint Flora Lockey MEnvSci, <i>Assistant Flood Risk Consultant</i>
Approved by:	Adam Edgerley BSc (Hons), Director
Date:	22 May 2023
Version:	Final v1.0

This document has been prepared solely as a Technical Note for HMG (Aber Rd) Ltd. This report is confidential to HMG (Aber Rd) Ltd and Weetwood Services Ltd accepts no responsibility or liability for any use that is made of this document other than by HMG (Aber Rd) Ltd for the purposes for which it was originally commissioned and prepared.

Summary of modelling study requirements	A modelling study has been undertaken to assess the existing tidal flood risk to the redevelopment site, whether the proposed redevelopment will be safe and whether flood risk elsewhere will be increased as a result of the proposals. The development site is located to the south-east of Aber Road at Ordnance Survey National Grid Reference SJ 239 734. Further details regarding the proposed redevelopment and site location are provided within the Weetwood Flood
	Consequences Assessment (FCA) report dated 21 April 2023.
Details of existing models	A copy of the River Dee model named "Panton Cop" has been provided by the Natural Resources Wales under licence.
	The Panton Cop model includes the site location and is herein referred to as the 'supplied model'. It is understood the supplied model has been approved for use by the Natural Resources Wales.
	The supplied model files include the four scenarios: Do Nothing – Short Term, Do Nothing – Long Term, Do Minimum – Overtopping and Do Minimum – Breaches.
Model extent and details of any truncations	The model extent has not been changed from the supplied model.
Amendments to hydrology	The hydraulic modelling study requires 4 events to be assessed; 1 in 200 and 1 in 1,000 Annual Exceedance Probability (AEP) events, both with climate change applied up to the year 2097, based on both the 70 th and 95 th percentile scenarios (70P and 95P).
	The model inflow hydrology has been derived from an existing Natural Resources Wales 1D-2D Flood Modeller Pro-TUFLOW hydraulic model of the River Dee, which was most recently updated in 2020 as part of its 'Flood Risk Assessment Wales' update and 'Tidal Dee Breaches' assessment. That model does not represent the site within its 2D domain; however, the 1D domain of the model covers the River Dee section adjacent to the site.
	The 2020 hydraulic model utilises the latest available tidal levels from the Environment Agency's Coastal Flood Boundary Conditions for the UK: 2018 Update, and it includes climate change up to the years 2095 and 2120 using the allowances set out in superseded Welsh Government guidance issued on 23 August 2016 (reference CL-03-16).

	Weetwood has updated the inflows at node Est_00000 (i.e. the mouth of the Estuary) to account for the latest guidance on climate change allowances issued by the Welsh Government on 27 September 2021. The guidance states "as a minimum, development proposals should be assessed against the relevant regional 70th percentile to inform design levels. An assessment should also be made against the 95th percentile to inform mitigation measures, access and egress routes and emergency evacuation plans."
	Climate change allowances have been applied to the existing 1 in 200 and 1 in 1,000 AEP tidal inflow boundaries of the model to allow for 75 years of climate change, up to the year 2097 for the 70th percentile (70P) and 95th percentile (95P) scenarios (note, the modelling study was undertaken in 2022). Weetwood has then re-run the 2020 Natural Resources Wales model with the amended hydrology.
	Hydrographs have then been extracted from the amended Natural Resources Wales model outputs at node Est_20000, which is located adjacent to the Weetwood model domain, to create inflow hydrographs for the supplied model.
Amendments to existing model hydraulics	No amendments have been made to the supplied model hydraulics.
Design runs	The amended 'baseline' model has been run for the 1 in 200 and 1 in 1,000 plus climate change (2097) 70P and 95P AEP events. The model run number for the overtopping scenario is 5560_001 The model has been run in TUFLOW version 2020-10-AC-iDP-w64, using the HPC solver.
	In addition to the overtopping scenario, a breach scenario has been assessed for the aforementioned AEP events, accounting for a 50 m wide breach of the existing River Dee Flood defences located approximately 1 km north of the site. This breach location was chosen in the supplied model informed by local flood history observed in December 2013. The model run number for the breach scenario is 5560_002
Suitability and accuracy of model for study site	hydrology, it is considered suitable for site-specific modelling. The model cell size is 4 m which enables sufficient detail of the floodplain and flow routes around buildings.
	The stability of the model is good for the site location.
	There are 37 warning messages and 19 checks shown prior to the simulation during all model events. Most of these are a legacy of the supplied model and are not thought to impact the maximum results at the site.
	The minimum timestep (dt) mapped outputs indicate areas of instability, with areas where timesteps are smaller than 0.5 seconds potentially indicating an issue with the model. Generally, the minimum timestep is greater than 0.5 seconds with some exceptions within areas where deeper flooding is expected.
Sensitivity and calibration	The amendments undertaken to the supplied model are relatively minor. As such, sensitivity testing is not considered necessary.
Submitted files	To accompany this Technical Note, the following files can be provided to Natural Resources Wales if required:
	The digital model files.
	• A modelling log detailing the model runs that have been undertaken.
	To submit the above files, we will require a "sharefile" link from Natural Resources Wales. If required, please can this be sent to Flora.Lockey@Weetwood.net

Delivering client focussed services nationally

Flood Risk Assessments Flood Consequences Assessments Surface Water Drainage Foul Water Drainage Environmental Impact Assessments River Realignment and Restoration Water Framework Directive Assessments Environmental Permit and Land Drainage Applications Sequential, Justification and Exception Tests Utility Assessments Expert Witness and Planning Appeals Discharge of Planning Conditions

www.weetwood.net

APPENDIX E

Swinchiard Brook Hydraulic Modelling Study, June 2023

(5560/HMS/Final/v1.1/2023-06-07)

LAND OFF ABER ROAD, FLINT, FLINTSHIRE, CH6 5EX

SWINCHIARD BROOK HYDRAULIC MODELLING STUDY

Final Report v1.1 June 2023

Weetwood Services Ltd info@weetwood.net www.weetwood.net

Report Title	Land off Aber Road, Flint, Flintshire, CH6 3EX Swinchiard Brook Hydraulic Modelling Study Final Report v1.1
Client	HMG (Aber Road) Limited
Date of issue	7 June 2023

Prepared by	Flora Lockey MEnvSci <i>Assistant Flood Risk Consultant</i> Matthew Newbold BSc (Hons) MSc GradCIWEM <i>Graduate Flood Risk Consultant</i>
Checked and Approved by	Adam Edgerley BSc (Hons) Director

This document has been prepared solely as a Hydraulic Modelling Study for HMG (Aber Road) Limited. This report is confidential to HMG (Aber Road) Limited and Weetwood Services Ltd accepts no responsibility or liability for any use that is made of this document other than by HMG (Aber Road) Limited for the purposes for which it was originally commissioned and prepared.

Contents

-	ature Sheet	i
Conte	ents of Tables, Figures & Appendices	ii
LISU	i Tables, Figures & Appendices	iii
1	Introduction	1
1.1	Purpose of Report	
1.2	Structure of the Report	
2	Site Details and Proposed Development	2
2.1	Site Location and Description	2
2.2	Waterbodies in the Vicinity of the Site	2
2.3	Flood Zone Designation	
3	Hydrology	4
3.1	Requirement for Flood Estimation	
3.2	Methodology	
3.3	Final Choice of Method	5
3.4	Flows Applied to Hydraulic Model	5
4	Hydraulic Model Development	7
4.1	Modelling Approach	7
4.2	Model Extent	7
4.3	Topographic Development	7
4.4	1D/2D Linking	
4.5	Model Coefficients	
4.6	Boundary Conditions	
4.7	Model Version and Simulation Information	
5	Model Runs and Results	
5.1	Model Runs	
5.2	Model stability	
5.3	Model Results	
6	Model Calibration and Sensitivity	
6.1	Model Calibration	
6.2	Model Sensitivity	
6.3	Model Limitations and Assumptions	
7	Summary	

List of Tables

Table 1:	FEH Catchment Descriptors	4
Table 2:	Peak Flow Estimates	6
Table 3:	Manning's <i>n</i> Values	11
	Model Runs	
Table 5:	Site Flood Information (Baseline)	15

List of Figures

Figure 1:	Location of Site and Surface Waterbodies	2
Figure 2:	Development Advice Map	
Figure 3:	Catchment Delineation	
Figure 4:	Flood Hydrographs	
Figure 5:	Model Extent	7
Figure 6:	LiDAR	8
Figure 7:	Location of Channel Structures in Modelled Reach	9
Figure 8:	Photographs of Channel Structures in Modelled Reach	11
Figure 9:	Input Boundaries	13

List of Appendices

- Annex A: Topographic Survey
- Annex B: Channel Survey
- Annex C: Weetwood Hydrological Assessment
- Annex D: Digital Model Files
- Annex E: Model Results Baseline
- Annex F: Model Results Sensitivity

1 INTRODUCTION

1.1 Purpose of Report

Weetwood Services Ltd ('Weetwood') has been instructed by HMG (Aber Road) Limited to undertake a hydraulic modelling study of Swinchiard Brook in order to identify and assess the level of flood risk from this source in association with a proposed redevelopment located at land off Aber Road, Flint.

1.2 Structure of the Report

The report is structured as follows:

- Section 1 Introduction and report structure
- Section 2 Provides background information relating to the development site and the watercourse
- Section 3 Describes the derivation of flows for the watercourse
- Section 4 Describes the hydraulic model development process
- Section 5 Describes the hydraulic model runs and results
- Section 6 Describes the hydraulic model calibration and sensitivity assessment
- Section 7 Presents a summary of key findings

2 SITE DETAILS AND PROPOSED DEVELOPMENT

2.1 Site Location and Description

The approximately 0.7 hectare (ha) site is located to the south-east of Aber Road at Ordnance Survey National Grid Reference SJ 239 734, as shown in **Figure 1**.

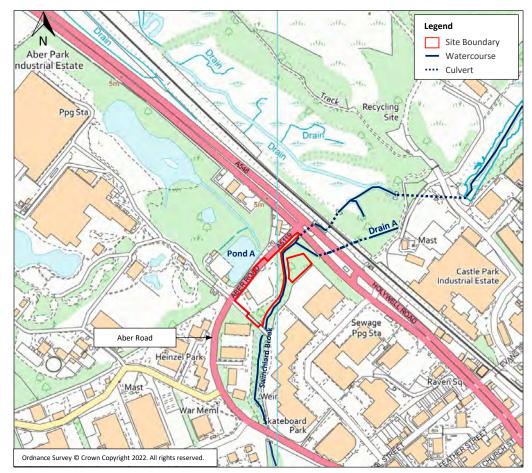


Figure 1: Location of Site and Surface Waterbodies

A topographic survey of the site was undertaken by Powers and Tiltman Ltd in 2010 and is provided in **Annex A**. Site levels are shown to be in the region of 6.1 - 8.0 m AOD falling in a northerly direction.

Levels along Aber Road, adjacent to the site, are shown to rise from 6.4 metres (m) Above Ordnance Datum (AOD) at the site entrance to 7.4 m AOD to the south-west. Levels along on the access road along the south-western boundary of the site are between 7.4 to 8.1 m AOD.

2.2 Waterbodies in the Vicinity of the Site

Swinchiard Brook flows in a northerly direction along the eastern boundary of the site, before being culverted under Holywell Road (A548) and ultimately outfalling into the River Dee (**Figure 1**).

A channel survey of Swinchiard Brook has been undertaken by Met Geo Environmental and is provided in **Annex B**.

2.3 Flood Zone Designation

Figure 1 of TAN15 defines three development advice zones as follows:

- Zone A: Considered to be at little or no risk of fluvial or tidal/coastal flooding
- Zone B: Areas known to have been flooded in the past evidenced by sedimentary deposits
- Zone C: Based on the Natural Resources Wales flood outline, equal to or greater than 0.1% (river, tidal or coastal). Zone C is subdivided into the following two zones:
 - Zone C1: Areas of the floodplain which are developed and served by significant infrastructure, including flood defences
 - o Zone C2: Areas of the floodplain without significant flood defence infrastructure

The development advice zones are shown on the Development Advice Map¹ and are defined by the predicted extent of the 1 in 1,000 (sea and rivers) AEP event (zone C) and British Geological Survey drift data (zone B). The zones do not take account of the possible impacts of climate change and consequent changes in the future probability of flooding.

The Development Advice Map (Figure 2) indicates that the majority of the site is located in zone C1 with an area in the south located in zone B.

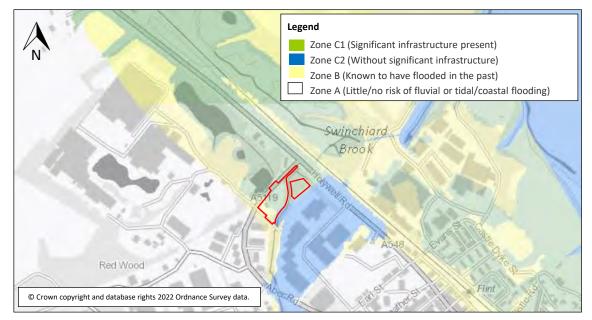


Figure 2: Development Advice Map Source: Natural Resources Wales website; Accessed: June 2022

In order to more accurately identify and assess the level of flood risk at the site from Swinchiard Brook, a 1D-2D ESTRY-TUFLOW hydraulic model has been developed by Weetwood.

¹ https://naturalresources.wales/evidence-and-data/maps/long-term-flood-risk/?lang=en

3 HYDROLOGY

3.1 Requirement for Flood Estimation

Design flows are required for the present day 1 in 20, 1 in 100 and 1 in 1,000 Annual Exceedance Probability (AEP) events and the 1 in 100 AEP event including 20% and 45% increases in flow to allow for future climate change in accordance with the Welsh Government guidance updated in September 2021².

3.2 Methodology

The catchment delineation is shown in **Figure 3** with key catchment descriptors shown in **Table 1**. The methodology is detailed within the Flood Estimation Calculation Recorded presented in **Annex C**.

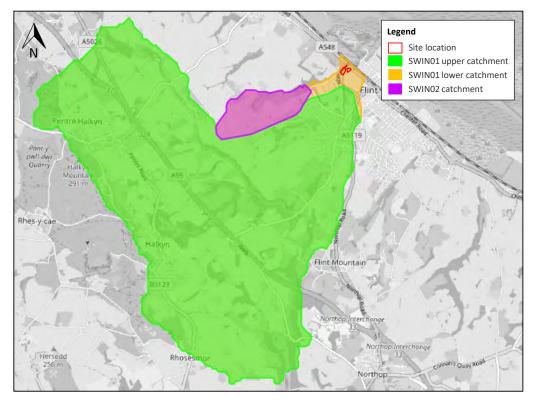


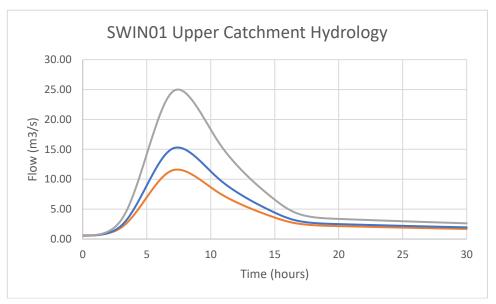
Figure 3: Catchment Delineation Table 1: FEH Catchment Descriptors

LOCATION	FARL	PROPWET	BFIHOST19	DPLBAR (km)	DPSBAR (m/km)	SAAR (mm)	URBEXT 2000	FPEXT
SWIN01-02	0.99	0.38	0.404	5.62	97.6	849	0.0504	0.0161

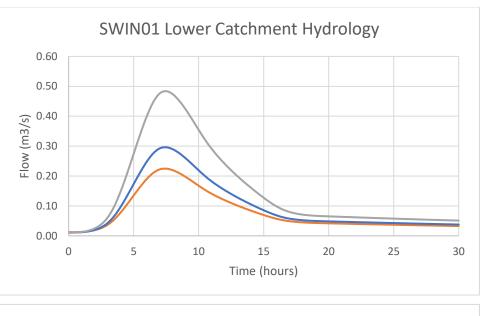
² https://www.gov.wales/sites/default/files/publications/2021-09/climate-change-allowances-and-flood-consequence-assessments_0

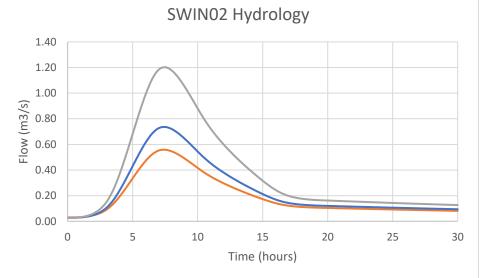
3.3 Final Choice of Method

Peak flow estimates up to the 1 in 100 AEP event have been derived using the Flood Estimation Handbook (FEH) Statistical Method. In order to determine flows for the 1 in 1,000 AEP event, ReFH2 has been used to calculate the ratio between the 1 in 100 and 1 in 1,000 AEP event flows, which has then been applied to scale the FEH 1 in 100 AEP event peak flow (i.e. the "Ratio Method").


Flows for the SWIN01 sub-catchments and the SWIN02 catchment have been calculated by weighting the flows based on the areas of the sub-catchments.

Flood hydrographs have been determined by the ReFH2 method.


3.4 Flows Applied to Hydraulic Model


The derived flows for each catchment have been input into the model as two point inflows at the upstream extent of Swinchiard Brook and the unnamed watercourse. The remaining flows for the lower part of the catchment were applied as lateral inflows to the lower reaches of Swinchiard Brook.

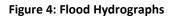

The hydrographs used within the model for Swinchiard Brook are shown in **Figure 4** and peak flow estimates for each sub-catchment are shown in **Table 2**.

Table 2:	Peak Flow	Estimates
----------	-----------	-----------

	Peak Flows (m3/s) for the following return periods					
Location	20	100	100 + 20% CC	100 + 45% CC	1000	
SWIN01 Upper Catchment	11.61	15.30	18.36	22.19	24.99	
SWIN01 Lower Catchment	0.22	0.30	0.36	0.43	0.48	
SWIN02	0.56	0.74	0.88	1.07	1.20	

4 HYDRAULIC MODEL DEVELOPMENT

4.1 Modelling Approach

In order to more accurately define the level of fluvial flood risk to the site from the Swinchiard Brook, Weetwood has developed an ESTRY-TUFLOW hydraulic model.

The Swinchiard Brook has been represented using a 1D ESTRY model. The floodplain has been modelled in 2D using TUFLOW. This has been dynamically linked to the 1D fluvial model.

4.2 Model Extent

The upstream extent of the 1D domain of Swinchiard Brook is located approximately 500 m south of the site (node label SWIN01_1105). The upstream extent of the south-western tributary is located 640 m south-west (node label SWIN03_0620). The downstream extent of the 1D domain is located approximately 250 m north-east of the site (node label SWIN01_0166).

The 2D domain extends across both the left and right floodplain between the entire modelled reach. The lateral extents of the 2D domain have been derived with reference to the topography and site location. The upstream and downstream extent of the 2D domain has been based on topography in order to have minimal influence on the assessed flood risk at the site.

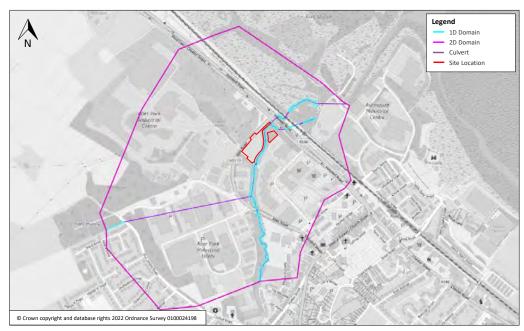


Figure 5 illustrates the model extent.


Figure 5: Model Extent

4.3 Topographic Development

In the 1D domain the channel topography is defined by cross-sections. The data collected during the channel survey (**Annex B**) has been used to define these channel cross-sections. The cross-sections are spaced at regular intervals with more detailed information collected around the structures (**Section 4.3.1**).

The 2D domain topography is based upon filtered LiDAR data as shown in Figure 6.

Figure 6: LiDAR

The LiDAR data was flown during February 2013 and is considered to be the most recent available data with a grid resolution of 2 m. The LiDAR data was validated against the survey data (**Annex A**) and is considered fit for purpose.

Whilst not ideal when using 2 m LiDAR, the grid size used for the 2D domain was chosen as 1 m given the small widths of some of the 1D channels. This grid sizing will also enable any flow paths between buildings/along roads to be modelled whilst still permitting reasonable model run times.

4.3.1 Structures - Channel

The structures that cross the channel are represented within the 1D domain. The location of these structures is shown in **Figure 7** with photographs of each structure and the Flood Modeller unit type provided **Figure 8**.

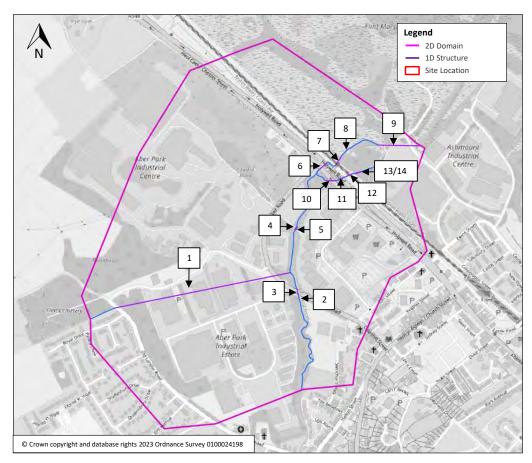


Figure 7: Location of Channel Structures in Modelled Reach

1. SWIN03_0539s Estry Type: C

2. SWIN01_0779s Estry Type: BBW

3. SWIN01_0769s Estry Type: BBW

5. SWIN01_0568s2 Estry Type: R

4. SWIN01_0568s1 FM Unit: RW

6. SWIN01_0364s Estry Type: R

7. SWIN01_0294s Estry Type: BB

8. SWIN01_0240s (No image available) *Estry Type: WW*

9. SWIN01_0131s Estry Type: CU

10. SWIN01_0277s Estry Type: R

11. SWIN02_0254s Estry Type: RW

12. Swin02_0225s Estry Type: BB

13. SWIN02_0196s1 & SWIN02_0196s2 *Estry Type: C*

Figure 8: Photographs of Channel Structures in Modelled Reach

4.4 1D/2D Linking

The 1D channel has been dynamically linked to the 2D domain. This has been carried out using 'HX' lines and 'CN' connectors within the '2d_bc_hxi' layer in TUFLOW. Linking the two domains allows water to pass from the 1D domain to the 2D domain if water levels in the channel are higher than the floodplain. Conversely it allows water to pass into the 1D domain when water levels in the channel drop below floodplain levels.

4.5 Model Coefficients

4.5.1 Manning's n

The Manning's *n* values represent the 'roughness', or resistance to water flow due to friction, in both the river channel and the floodplain. Mapping data, aerial photography and several site visits were used to define the channel and land use types, which were then assigned Manning's *n* values.

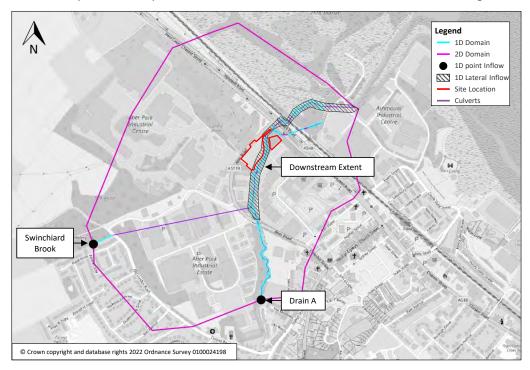
The Manning's *n* values used in the model are shown in **Table 3**.

Table 3	: Manning	g's n Values
---------	-----------	--------------

	Land Use	Manning's n Value			
~ 듣 -	Clean, straight channel	0.030			
ch anr el	Clean, straight channel with stones and weeds	0.040 / 0.045			

	Clean, straight channel with more stones and weeds	0.050
	Full Concrete Channel	0.013
Structures	Brick with Cement Mortar	0.015
Struc	Trowel Finished Concrete	0.013
	Short Grass	0.030
	Dense Trees and Shrubs	0.060
	Medium to Dense Brush	0.07
lain	Gardens	0.100
Floodplain	Roads	0.25
Floe	Hardstanding	0.035
	Waterbodies	0.025
	Buildings	0.500
	Woodland	0.100

4.6 Boundary Conditions


4.6.1 Input Boundaries

The input flow hydrographs are those outlined within **Section 3**.

Flows have been input into the upstream extent of the 1D model of Swinchiard Brook and Drain A using a 'QT' point and are read into TUFLOW using a '1d_bc_inflow' file. A lateral inflow has been applied along the downstream extent of Swinchiard Brook using 'QT' links, which have also been inputted into TUFLOW using a '1d_bc_inflow' file.

No flow has been input into Drain A (details presented in Section 3).

These have been input into the upstream extent of the 1D model at the locations shown in Figure 9.

Figure 9: Input Boundaries

4.6.2 Downstream Boundaries

Given the model extents proximity to the River Dee (tidally influenced), the downstream boundary condition for the model has been derived from the Natural Resources Wales 2015 ESTRY_TUFLOW Model for the areas of Greenfield and Panton Cop (Greenfield_5_V2.0_2015) for the River Dee, using the mean high water spring plus an allowance for climate change.

4.7 Model Version and Simulation Information

The model was developed using TUFLOW build 2020-10-AD-iSP-w64 (HPC Solver).

Simulations for all design events were run with a 0.25 second timestep in the 1D Flood Modeller domain and a 0.5 second timestep in the 2D TUFLOW domain. Information on timestep and other variables can be seen in the '*.tcf/.ecf' files for each run and is recorded in the modelling logbook spreadsheet ('5560 Modelling Logbook.xls') accompanying this report (see **Annex D**).

5 MODEL RUNS AND RESULTS

5.1 Model Runs

Table 4 details the model runs that have been undertaken in order to assess the flood risk at the existing site under the baseline scenario.

Full details are provided in the '5560 Modelling Logbook.xls' included within Annex D of this report.

Scenario		Run Name	AEP Flood Event		
		5560_026_Q0020	Present day 1 in 20		
		5560_026_Q0100	Present day 1 in 100		
Bac	alina	5560_026_Q1000	Present day 1 in 1,000		
Baseli	enne	5560_026_Q0100CC20	1 in 100 plus climate change (20%)		
		5560_026_Q0100CC45	1 in 100 plus climate change (45%)		
		5560_026_Q1000CC20 1 in 1,000 plus climate change (20			
Consitivity	Manning's n + 20%	5560_036_Q0100CC20	Manning's n + 20%		
Sensitivity	Manning's n - 20%	5560_037_Q0100CC20	Manning's n - 20%		
Plac	kaga	5560_027_Q0100CC45	25% blockage of the A548 culvert		
Blockage		5560_028_Q0100CC45	80% blockage of the A548 culvert		

Table 4: Model Runs

5.2 Model stability

Once the model has fully initialised, it is stable in both the 1D and 2D domains. The final cumulative Mass Error (ME) is between 0.01% and 0.09% during the baseline scenarios.

The HPC 'Not a Number' (NaN) value is zero for all modelled runs, indicating that no instabilities have occurred in the 2D domain. The HPC 'High Control Number' (HCN) value is also zero for all modelled runs.

There are a maximum 179 negative depths during the simulations; All of the negative depths occur early within the simulation and do not impact the maximum modelled results.

7 warning messages were indicated prior to simulation and a maximum of 335 were observed during. These relate to the aforementioned negative depths and associated instabilities that occur early within the simulation. These warnings have been checked accordingly and are considered acceptable.

The 1 in 100 AEP plus climate change (45%) baseline (free-flowing) scenario did not complete it's simulation, due to the aforementioned negative depths observed at the early stages on the simulation. For the purposes of this study, this scenario is not considered to have any bearing on proposed flood mitigation measures given that the site will be mitigated against the more extreme blockage scenario.

5.3 Model Results

Model output plots illustrating the maximum flood extents for all modelled events are provided in Annex E.

The majority of flooding to the south-western half of the site is resultant of overland flow, entering at the south-western corner of the site from higher ground. In lower lying areas in the central and northern sections of the site, flooding occurs due to out of bank flow from Swinchiard Brook, which travels off site in a generally northern direction toward the A548.

Table 5 summarises the maximum depth and velocity of floodwaters expected at the site during the aforementioned events.

Coorerio		Max Level	Max De	pth (m)	Max Velocity (m/s)				
Scenario	AEP Event	(m AOD)	Highest	Mean	Highest	Mean			
	Present day 1 in 20	6.01 - 7.39*	0.45	0.05	0.31	0.07			
	Present day 1 in 100	6.11 – 7.39*	0.51	0.09	0.51	0.13			
Overtopping	1 in 100 +20% climate change	6.13 - 7.40*	0.56	0.12	0.55	0.16			
	Present day 1 in 1,000	6.13 - 7.40*	0.62	0.16	0.77	0.19			
	1 in 1,000 +20% climate change	6.32 - 7.40*	0.66	0.19	0.88	0.23			
	1 in 100 +20% climate change	6.19 - 7.40*	0.58	0.14	0.69	0.17			
Bridge Blockage	1 in 100 +45% climate change	6.19 - 7.40*	0.61	0.15	0.78	0.19			
(25%)	Present day 1 in 1,000	6.19 - 7.41*	0.63	0.17	0.83	0.20			
	1 in 1,000 +20% climate change	6.33 - 7.41*	0.6	0.19	0.86	0.23			
	1 in 100 +20% climate change	6.24 - 7.40*	0.62	0.16	0.87	0.19			
Bridge Blockage	1 in 100 +45% climate change	6.28 - 7.40*	0.65	0.18	0.87	0.20			
(80%)	Present day 1 in 1,000	6.32 - 7.41*	0.67	0.19	0.88	0.21			
	1 in 1,000 +20% climate change	6.33 – 7.41 *	0.71	0.21	0.89	0.23			

 Table 5: Site Flood Information (Baseline)

* highest levels relate to shallow overland flow from higher ground to the south-west.

6 MODEL CALIBRATION AND SENSITIVITY

6.1 Model Calibration

6.1.1 Known Historical Events

The Natural Resources Wales historic flood outlines database³ indicates that flooding in the north and east of the site occurred in 2000 as a result of the Swinchiard Brook channel capacity being exceeded. No details have been made available to confirm flood levels during that event. As such, it has not been possible to calibrate the hydraulic model using historic flow/level data.

6.2 Model Sensitivity

6.2.1 Manning's n

Sensitivity testing has been carried out for the 1 in 100 plus climate change (20%) AEP event on the Manning's n coefficients by varying them by +/-20%.

Model output plots are provided in **Annex F**. The results indicate that despite expected changes in velocity as a result of increasing Manning's *n*, peak water levels were generally not altered beyond +0.03 and -0.07 m within the site and the flood extents were not significantly different.

Based on the above the model is not considered to be sensitive to changes in roughness coefficients.

6.2.2 Downstream Boundary

Given that the flood levels applied to the downstream boundary of the model have been taken from the modelled outputs of a Natural Resources Wales hydraulic model, no sensitivity testing is considered to be necessary for the downstream boundary of the model for this study.

6.2.3 Structure Blockage

Sensitivity testing has been carried out for the 1 in 100 plus climate change (20%) AEP event by applying a 25% and 80% blockage to the bridge located beneath the A548 (SWIN01_0364s), approximately 45 m downstream of the site.

Model output plots are provided in **Annex F**. The results indicate a 25% and 80% blockage would increase flood levels at the site by approximately 0.02 and 0.07 m respectively. Additional water backing up behind the structure is shown to flow north-west across Aber Road before being able to build up to significant depths at the site itself. Given this, the site is not considered to be sensitive to blockages of the A548 bridge.

6.3 Model Limitations and Assumptions

Study specific model limitations and assumptions include:

- The model has been prepared specifically for the application site and therefore should present the worst-case scenario for the site and may not accurately represent flood risk in other locations.
- Model calibration has not been undertaken due to limited data available.

³ http://lle.gov.wales/catalogue/item/HistoricFl/?lang=en

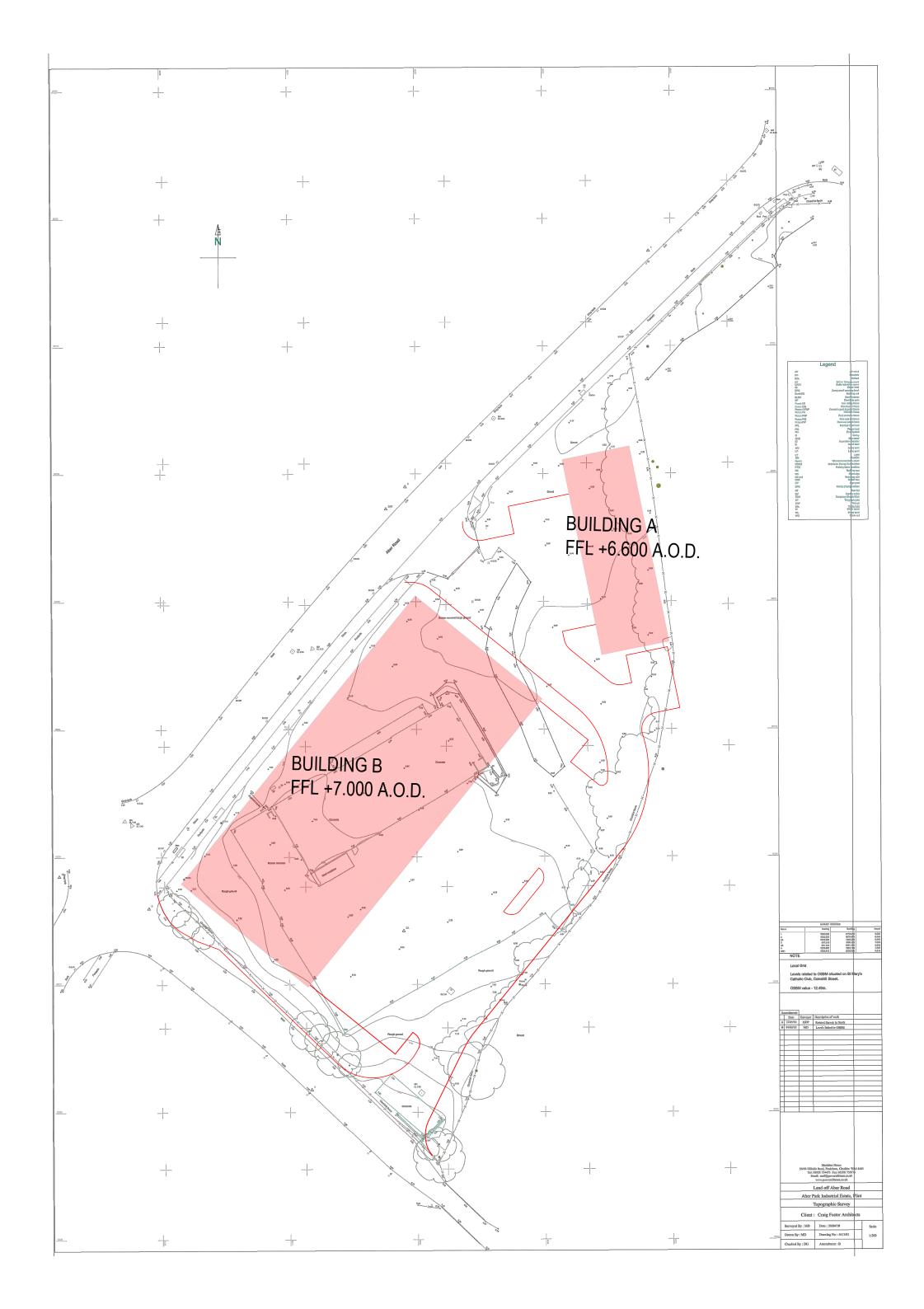
7 SUMMARY

This report has been prepared on behalf of HMG (Aber Road) Limited and relates to the proposed redevelopment of the land off Aber Road, Flint.

The Development Advice Map indicates that the majority of the site is located in zone C1 with an area in the south located in zone B.

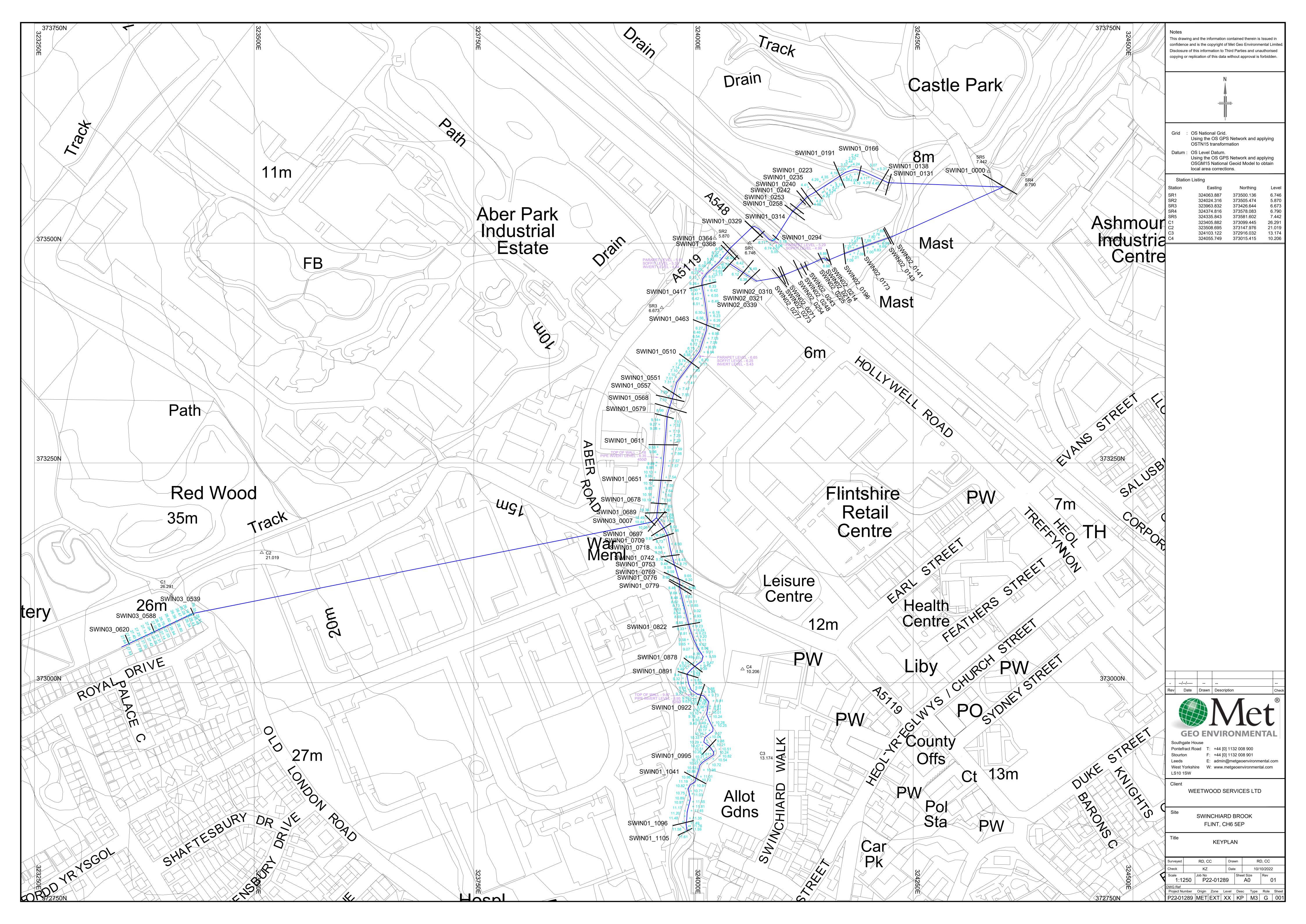
In order to more accurately identify and assess the level of flood risk at the site from Swinchiard Brook, Drain A and Drain B, a 1D-2D ESTRY-TUFLOW hydraulic model has been developed by Weetwood.

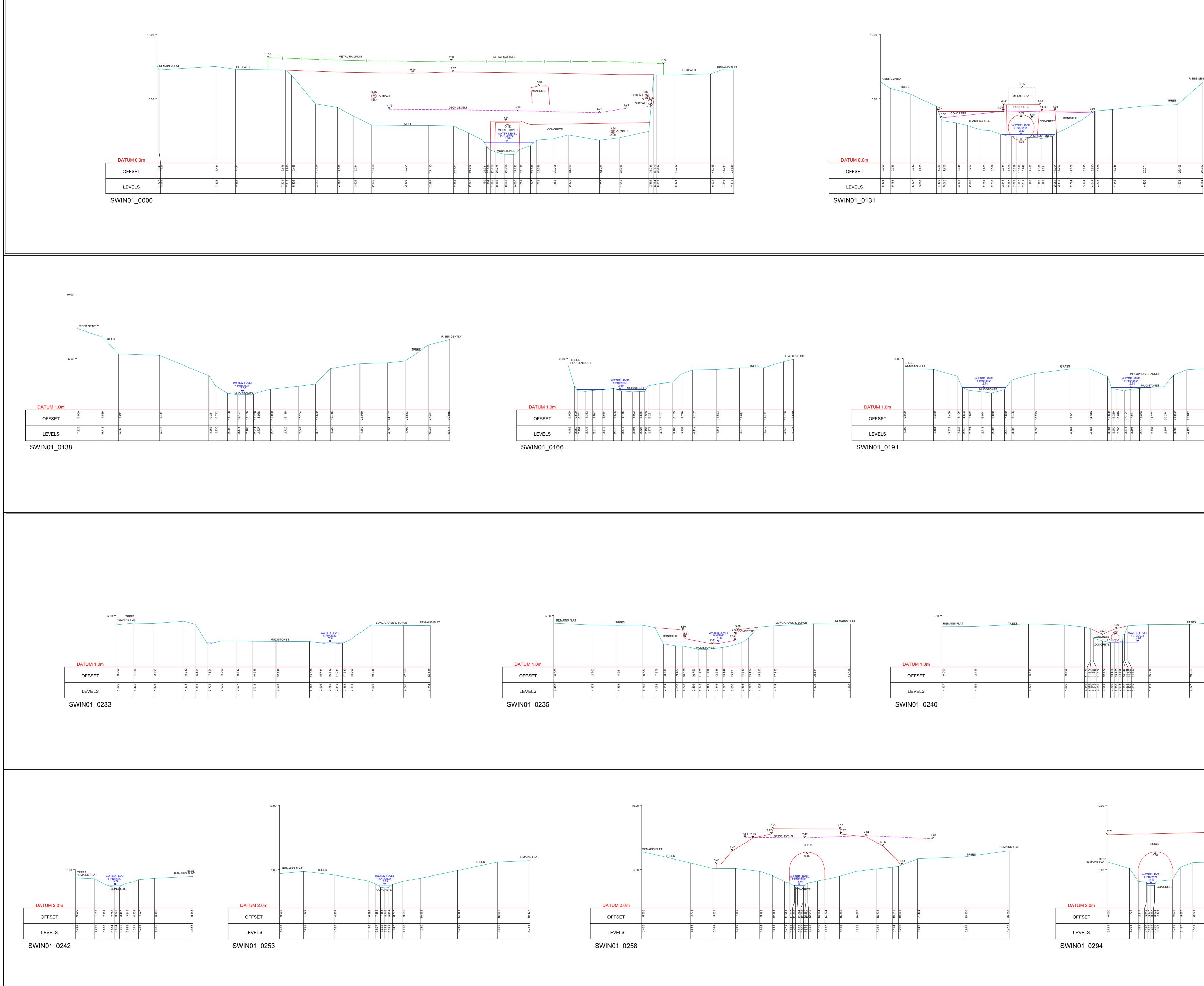
The model results indicate generally shallow flooding of the site from the south-west via overland flow from upstream, and flooding directly from overtopping of Swinchiard Brook in the eastern and northern portions of the site during all fluvial baseline AEP events assessed within this study.

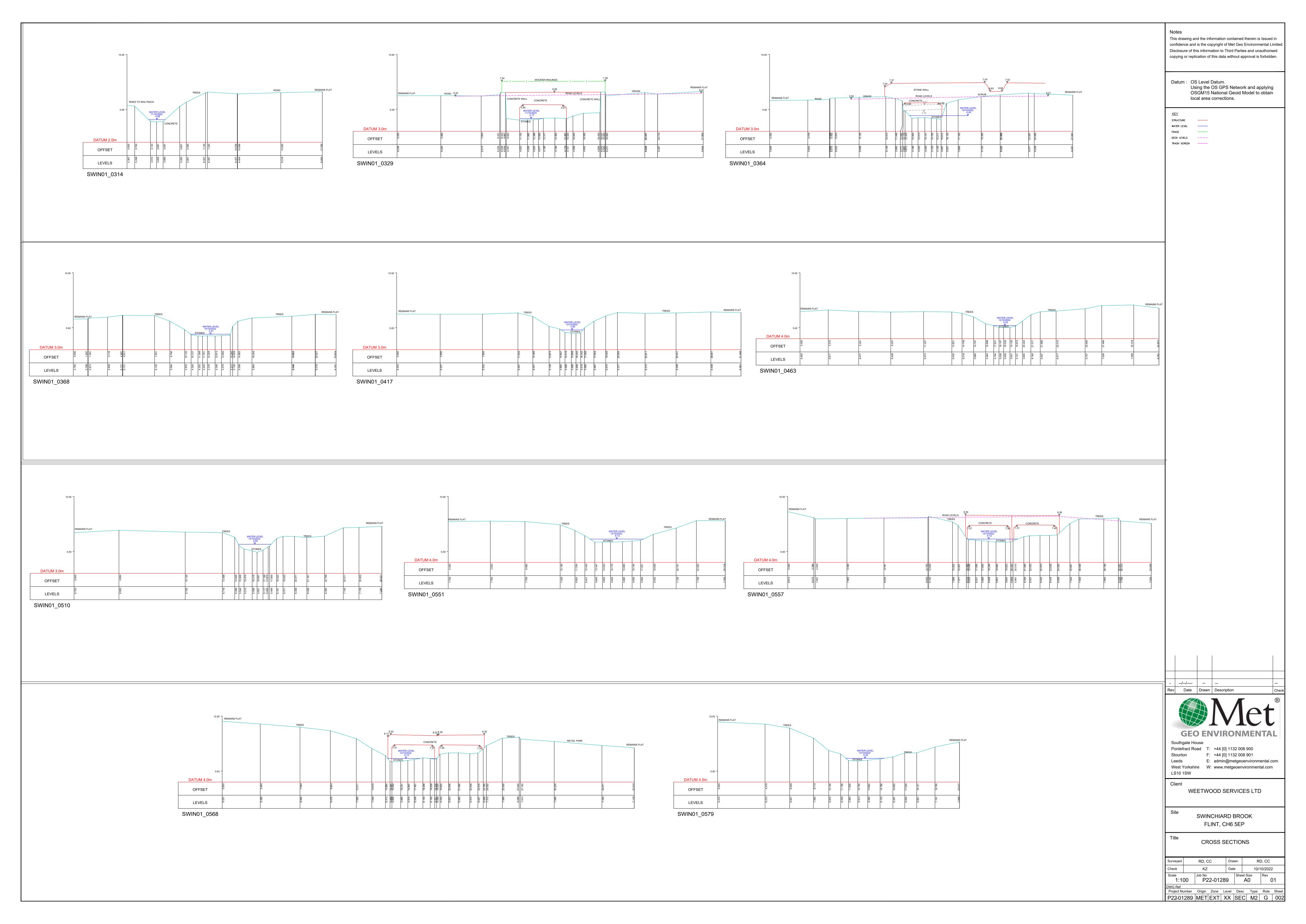

The model is not considered to be sensitive to variations in Manning's n coefficients.

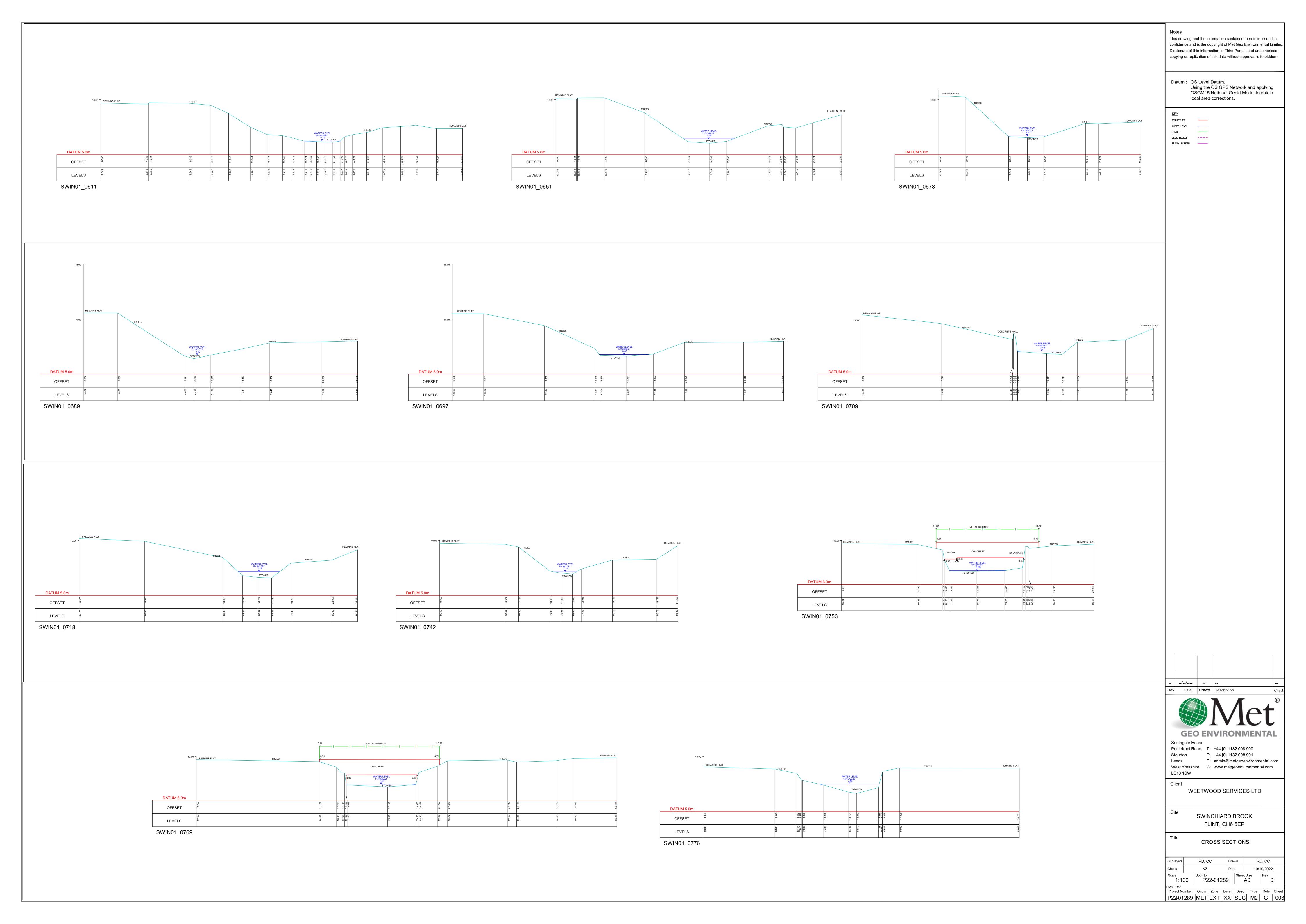
The site is not considered to be sensitive to blockages of the A548 bridge.

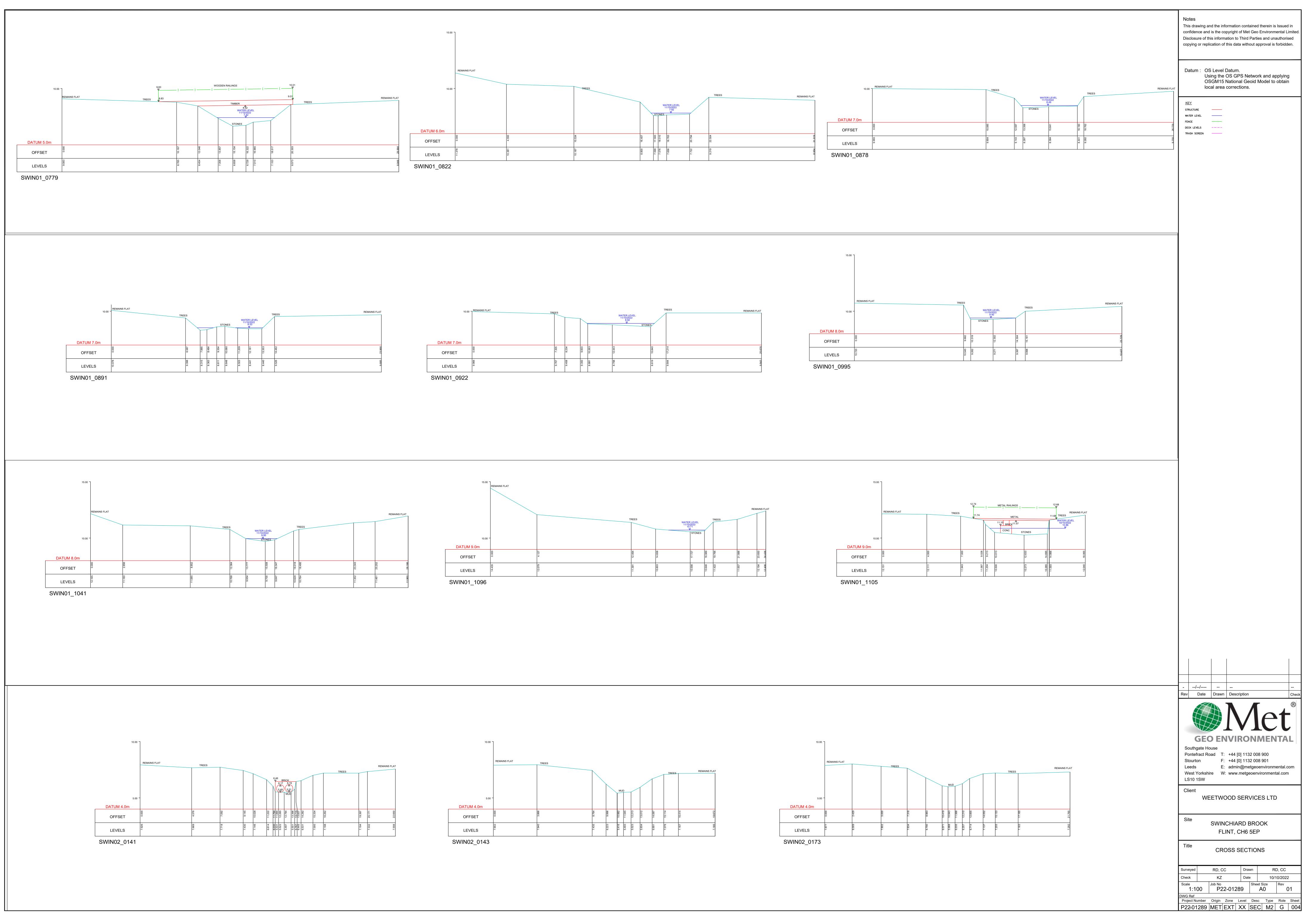
ANNEX A

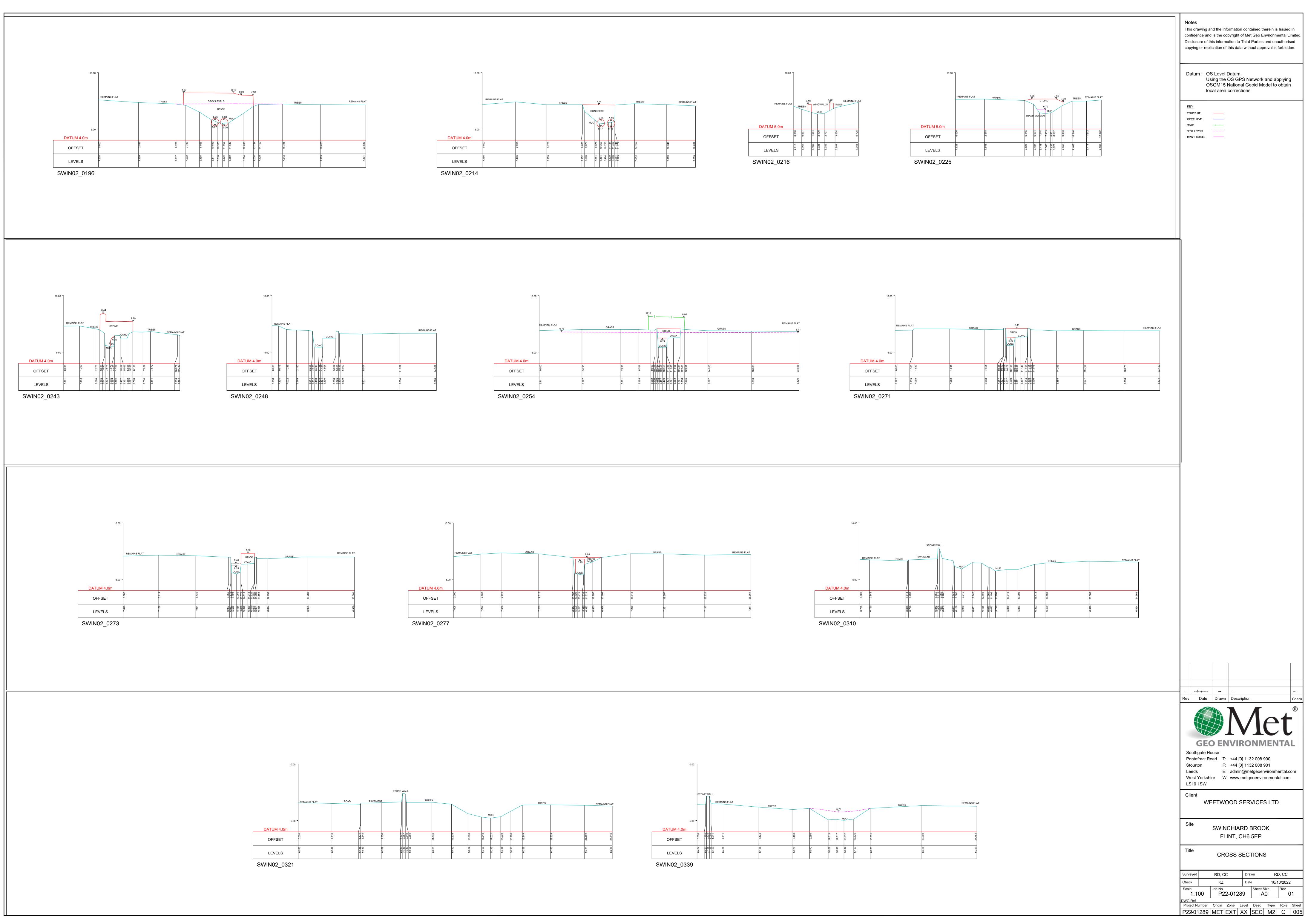

Topographic Survey

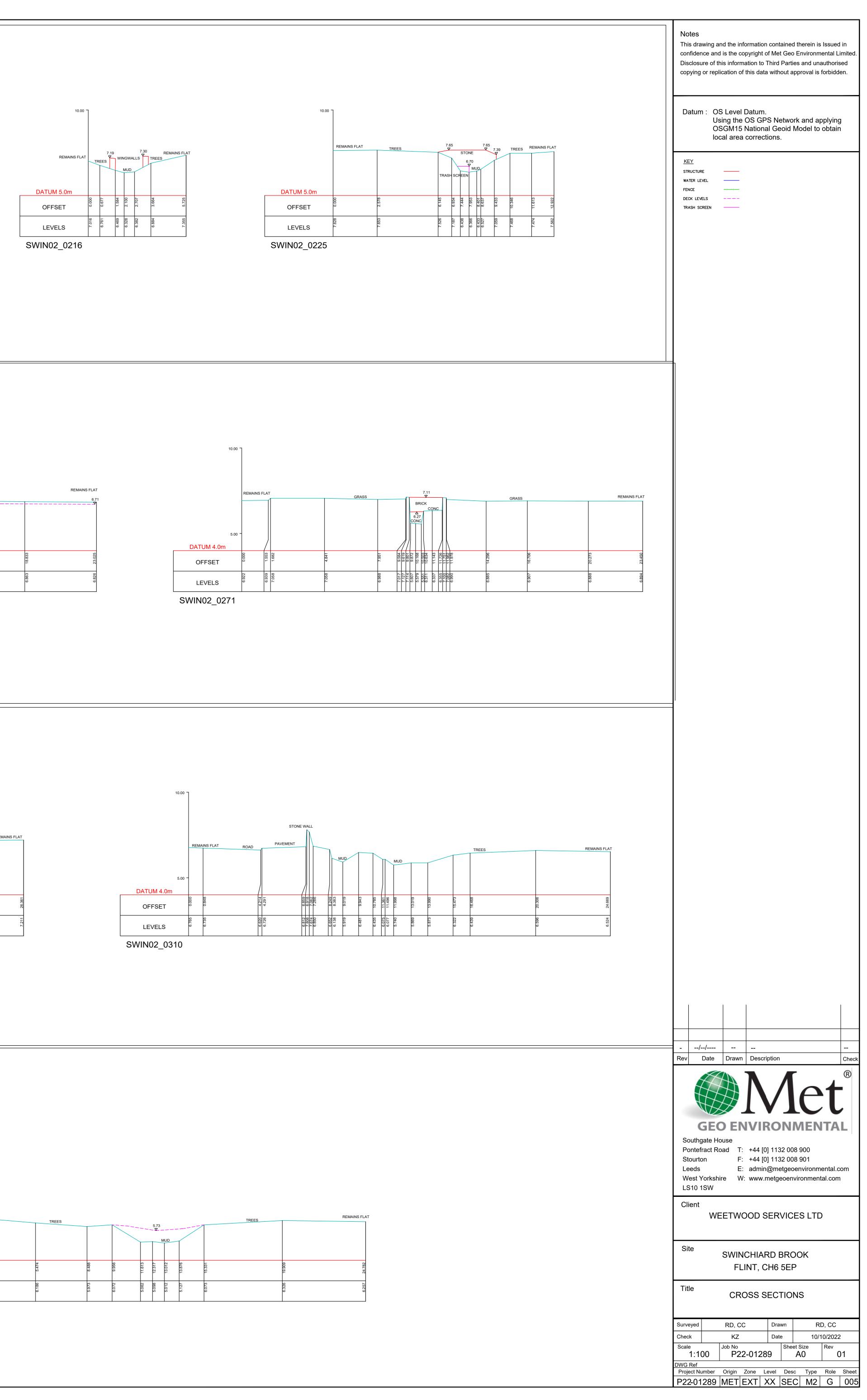


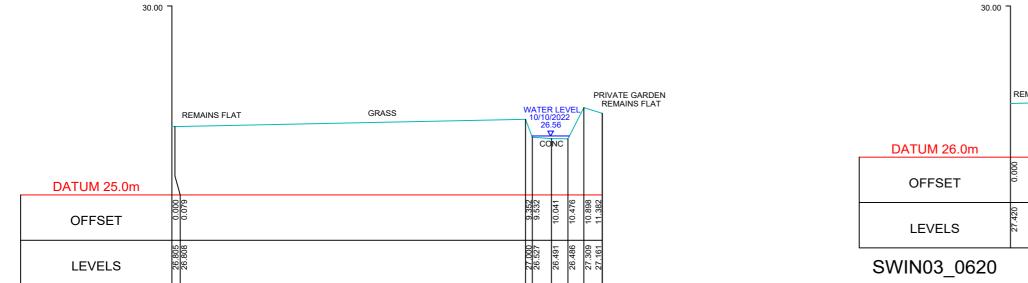

ANNEX B

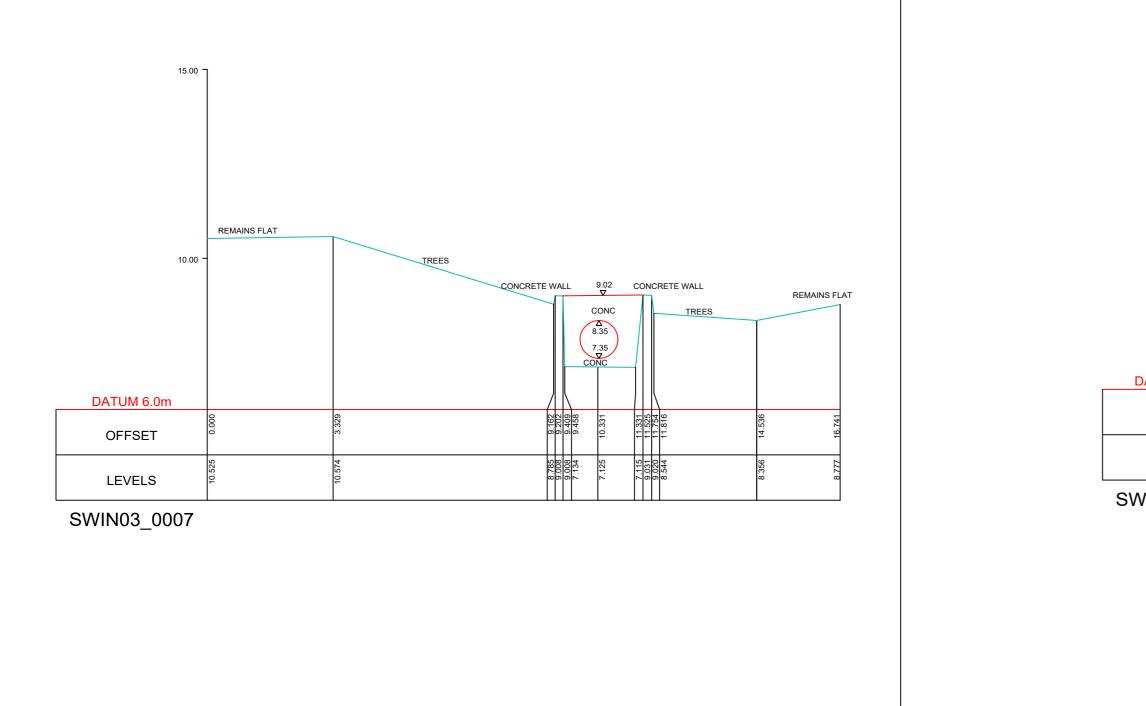

Channel Survey






NILY	Notes This drawing and the information contained therein is issued in confidence and is the copyright of Met Geo Environmental Limited. Disclosure of this information to Third Parties and unauthorised copying or replication of this data without approval is forbidden. Datum : OS Level Datum. Using the OS GPS Network and applying OSGM15 National Geoid Model to obtain local area corrections. KEY Image: Correction of the state without approval is forbidden. KEY Image: Correction of the state without approval is forbid to obtain local area corrections. KEY Image: Correction of the state without approval is forbid to obtain local area corrections. KEY Image: Correction of the state without approval is forbid to obtain local area corrections. KEY Image: Correction of the state without approval is forbid to obtain local area corrections. MATER LEVEL Image: Correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain local area correction of the state without approval is forbid to obtain approval is forbid to the state without approval is forbid to the st
TEES Image: Construction of the second of the sec	
REMAINS FLAT 000<	
TEES REMAINS FLAT	Rev Date Drawn Description Check Image: Check of the state of





13100	STONE WALL												
		REM	AINS FLAT										REMAINS FLAT
I		11		TREES							TREES		
								5.73 V					
	0.754	1.095 1.241	2.211	5.474	8.488	9.956	11.613	12.317	13.012	13.876	15.331	19.909	24.782
6.434	6.451 7.165	7.159 6.493	6.459	6.186	5.973	6.072	5.062	5.098	5.012	5.127	6.073	6.326	6.257

SWIN03_0588

30.00	Notes This drawing and the information contained therein is Issued in confidence and is the copyright of Met Geo Environmental Limited. Disclosure of this information to Third Parties and unauthorised copying or replication of this data without approval is forbidden. Datum : OS Level Datum. Using the OS GPS Network and applying OSGM15 National Geoid Model to obtain local area corrections.
REMAINS FLAT GRASS 26.36 26.36 PRIVATE GARDEN 25.00 VATER LEVEL CONC CONC CONC 25.00 25.40 CONC CONC OFFSET 0 0 0 0 LEVELS 0 0 0 0 0 VINO3_0539 0 0 0 0 0	KEY STRUCTURE WATER LEVEL FENCE DECK LEVELS TRASH SCREEN
	Image: second symbol
EMAINS FLAT GRASS EMAINS FLAT GRASS GRASS WATER LEVEL 10/10/2022 27.15 CONC 100270 10070 1007	Image: Constraint of the constra
	Site SWINCHIARD BROOK FLINT, CH6 5EP Title CROSS SECTIONS Surveyed RD, CC Drawn RD, CC Check KZ Date 10/10/2022 Scale Job No Sheet Size Rev 1:100 P22-01289 Sheet Size Rev DWG Ref Origin Zone Level Desc Type Role Sheet P22-01289 MET EXT XX SEC M2 G 0006

ANNEX C

Weetwood Hydrological Assessment

Flood estimation report: Swinchiard Brook & Drain A - Land off Aber Road, Fint, Flintshire, CH6 5EX

Contents

1	SUMMARY OF ASSESSMENT1
2	METHOD STATEMENT2
3	LOCATIONS WHERE FLOOD ESTIMATES REQUIRED5
4	STATISTICAL METHOD7
6	REVITALISED FLOOD HYDROGRAPH 2 (REFH2) METHOD9
7	DISCUSSION AND SUMMARY OF RESULTS 10
8	ANNEX12

Approval

Revision	Prepared by	Checked by	Date
1.0	Flora Lockey MEnvSci	James Aldridge BEng (Hons) MSc MCIWEM	14 April 2023

Abbreviations

AEP	annual exceedance probability
AM	Annual Maximum
AREA	Catchment area (km²)
BFI	Base Flow Index
BFIHOST	Base Flow Index derived using the HOST soil classification
CPRE	Council for the Protection of Rural England
FARL	FEH index of flood attenuation due to reservoirs and lakes
FEH	Flood Estimation Handbook
FSR	Flood Studies Report
HOST	Hydrology of Soil Types
NRFA	National River Flow Archive
OS	Ordnance Survey
POT	Peaks Over a Threshold
QMED	Median Annual Flood (with return period 2 years)
ReFH	Revitalised Flood Hydrograph method
ReFH2	Revitalised Flood Hydrograph 2 method
SAAR	Standard Average Annual Rainfall (mm)
SPR	Standard percentage runoff
SPRHOST	Standard percentage runoff derived using the HOST soil classification
Тр(0)	Time to peak of the instantaneous unit hydrograph
URBAN	Flood Studies Report index of fractional urban extent
URBEXT1990	FEH index of fractional urban extent
URBEXT2000	Revised index of urban extent, measured differently from URBEXT1990
WINFAP-FEH	Windows Frequency Analysis Package – used for FEH statistical method

1 SUMMARY OF ASSESSMENT

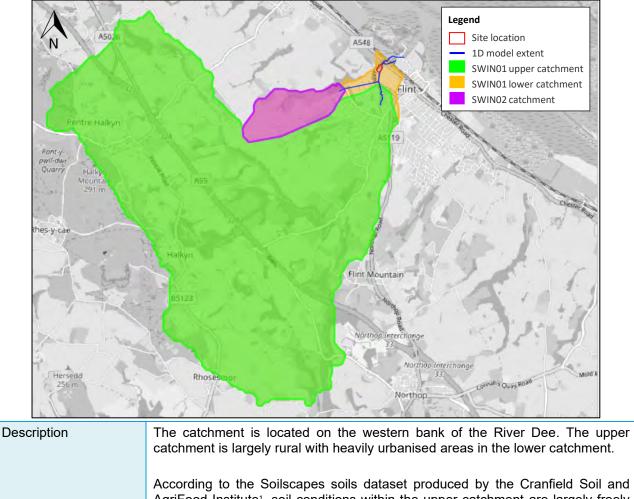
1.1 Summary

Catchment location	Flint, adjacent to the River Dee
Purpose of study and scope	To obtain the 20yr, 100yr and 1,000yr peak flows and hydrographs to use within a site specific hydraulic modelling study of Swinchiard Brook.
Key catchment features	Largely rural catchment with the lower reaches of the catchment within the urban area of Flint.
Flooding mechanisms	Fluvial
Gauged / ungauged	Unguaged
Final choice of method	FEH Statistical method
Key limitations / uncertainties in results	Unguaged catchment

1.2 Note on flood frequencies

The frequency of a flood can be quoted in terms of a return period, which is defined as the average time between years with at least one larger flood, or as an annual exceedance probability (AEP), which is the inverse of the return period.

The table below is provided to enable quick conversion between return periods and annual exceedance probabilities.


AEP (%)	50	20	10	5	3.33	2	1.33	1	0.5	0.1
AEP	0.5	0.2	0.1	0.05	0.033	0.02	0.0133	0.01	0.005	0.001
Return period (yr)	2	5	10	20	30	50	75	100	200	1,000

2 METHOD STATEMENT

2.1 Requirements for flood estimates

Overview	Weetwood Services Ltd ('Weetwood') has been instructed by HMG (Aber Road) Limited to identify and assess the level of flood risk from Swinchiard Brook to the proposed development site located at land off Aber Road, Flint.
	Peak flows and hydrographs are required as part of this study. The required design events are 20yr, 100yr (with and without allowances for climate change) and 1000yr.
	Flow estimations are required at the upstream and downstream extents of the model.
	This document details the work undertaken to derive the flow estimations that will be used within the hydraulic model of Swinchiard Brook.
Project scope	The scope of work includes a simple review of flood history, review of gauging station data (if available) and derivation of peak flows and hydrographs to be used within the hydraulic model.

2.2 The catchment

According to the Soilscapes soils dataset produced by the Crantield Soil and AgriFood Institute¹, soil conditions within the upper catchment are largely freely draining, with some areas of slowly permeable seasonally wet loamy and clayey soils. In the lower catchment it is mostly areas of slowly permeable seasonally wet loamy and clayey soils.

British Geological Survey mapping of surface geology ² indicates the underlying
bedrock formation comprises mudstone, siltsone and sandstone and argillaceous rocks, interbedded.

2.3 Source of flood peak data

Source NRFA peak flows dataset, Version 11, released September 2022. This contains data up to water year 2019-2020.

2.4 Other data available and how it has been obtained

Type of data	Data relevant to this study?	Data available?	Source of data	Details
Check flow gaugings	Yes	No		
Historical flood data	Yes	Yes	Natural Resources Wales historic flood outlines database ³	Flooding occurred in the north and east of the site in 2000 as a result of the Swinchiard Brook channel capacity being exceeded. No details have been made available to confirm flood levels during the event.
Flow or river level data for events	Yes	No		
Rainfall data for events	No	No		
Potential evaporation data	No	No		
Results from previous studies	Yes	No		
Other data or information	No	No		

2.5 Hydrological understanding of catchment

Conceptual model	Swinchiard Brook flows in a predominantly easterly direction. Swinchiard Brook is culverted under Aber Road, Holywell Road and the North Wales Coast Line before outfalling into the tidal River Dee via a flapped outfall. Flooding at the proposed development site is likely to result from peak flows exceeding the channel capacity and/or the blockage of hydraulic structures.
Unusual catchment features	The catchment drains into the tidal River Dee via a flapped outfall. There are no other unusual features to take account of.

2.6 Initial choice of approach

Is FEH appropriate?	Yes
Initial choice of method(s) and reasons How will hydrograph shapes be derived if needed?	FEH statistical method is the preferred approach for the estimation of flood frequency.
Will the catchment be split into sub- catchments? If so, how?	ReFH2 being undertaken as a comparison and to derive flood hydrographs.

² http://mapapps2.bgs.ac.uk/geoindex/home.html

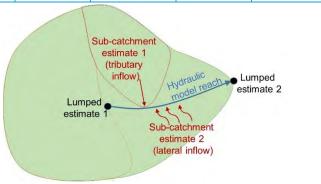
3

http://lle.gov.wales/catalogue/item/HistoricFl/?lang=en

Annex # - Flood Estimation Report v1.0

	The flows derived for the SWIN01 upper catchment and SWIN02 will be added to the upstream extent of the hydraulic model. Flows for the SWIN01 lower catchment will be laterally applied to Swinchiard Brook downstream of Aber Road to the confluence with the River Dee.
Software to be used (with version numbers)	FEH Web Service / WINFAP 5 / ReFH2.3

3 LOCATIONS WHERE FLOOD ESTIMATES REQUIRED

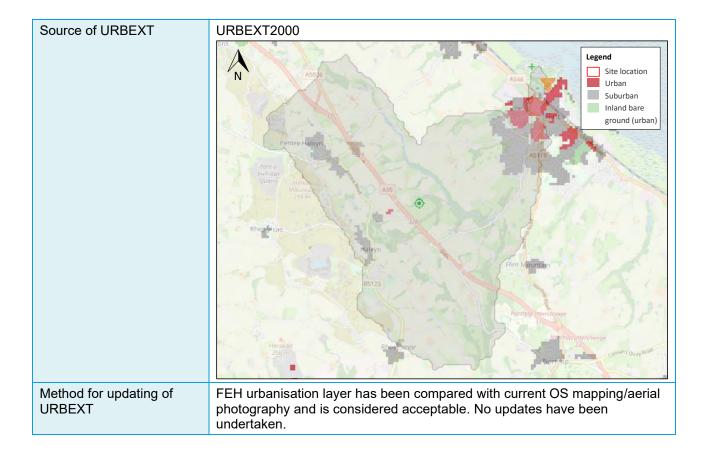

The table below lists the locations of subject sites. The site codes listed below are used in all subsequent tables to save space.

3.1 Summary of subject sites

	S: Sub- catchment					ROM (km²)	altered
SWIN01-02 L	-	Swinchiard Brook	Catchment located upstream of the North Wales Coast Line railway embankment SWIN01 upper = 17.05 km ² SWIN01 lower = 0.33 km ² SWIN02 = 0.82 km ²	324300	373550	18.47	n/a

Note: Lumped catchments (L) are complete catchments draining to points at which design flows are required.

Sub-catchments (S) are catchments or intervening areas that are being used as inputs to a semi-distributed model of the river system. There is no need to report any design flows for sub-catchments, as they are not relevant: the relevant result is the hydrograph that the sub-catchment is expected to contribute to a design flood event at a point further downstream in the river system. This will be recorded within the hydraulic model output files. However, catchment descriptors and ReFH model parameters should be recorded for sub-catchments so that the results can be reproduced.


3.2 Important catchment descriptors at each subject site (incorporating any changes made)

Site code	FARL	PROPWET	BFIHOST19	DPLBAR (km)	DPSBAR (m/km)	SAAR (mm)	URBEXT 2000	FPEXT
SWIN01-02	0.99	0.38	0.404	5.62	97.6	849	0.0504	0.0161

3.3 Checking catchment descriptors

sub-catchment estimates.

Record how catchment boundary was checked and describe any changes	The catchment extents have been derived using the Flood Estimation Handbook (FEH) Web Service and were validated using Ordnance Survey (OS) mapping and LiDAR data.
	Changes to the catchement extent have been made however recognising the minimal effect this made compared to the size of the catchment the FEH CD-ROM catchment extent has been used to derive the flows.
Record how other catchment descriptors were checked and describe any changes.	A review of BGS surface geology mapping suggests that the BFIHOST parameter is appropriate.

Δ STATISTICAL METHOD

4.1 **Application of Statistical method**

What is the purpose of applying this method?	Derivation of peak flows.
--	---------------------------

4.2 Overview of estimation of QMED at each subject site

				Data	transfer				
	QMED	ural) (Iaru om E Ds Iaru	NRFA numbers for donor		Moderate QMED adjustme	one	ore than donor	Urban adjust- ment factor UAF	Final estimate of QMED (m ³ /s)
Site (rural) code CDs (m³/s)	CDs		sites used (see 4.3)	Distance between centroids d _{ij} (km)	t factor (A/B)ª		Weighted ave. adjustment		
SWIN01 -02	6.311	DT	66005	22.96	22.96 1.655ª			1.06745	5.809
Are the values of QMED spatially consistent?					n/a				
Method used for urban adjustment for subject and donor sites					nor sites	WINFAP v5			
Paramete	rs used fo	r WINI	FAP v5 urba	n adiustmen	t if applic	able			

arameters used for winrap vo urban adjustment il applicable

Impervious fraction for built- up areas, IF	Percentage runoff for impervious surfaces, PR _{imp}	Method for calculating fractional urban cover, URBAN
0.4	70%	URBEXT2000

Notes

Methods: AM - Annual maxima; POT - Peaks over threshold; DT - Data transfer (with urban adjustment); CD - Catchment descriptors alone (with urban adjustment); BCW - Catchment descriptors and bankfull channel width (add details); LF - Low flow statistics (add details).

The QMED adjustment factor A/B for each donor site is moderated using the power term, a, which is a function of the distance between the centroids of the subject catchment and the donor catchment. The final estimate of QMED is (A/B)^a times the initial (rural) estimate from catchment descriptors.

Important note on urban adjustment

The method used to adjust QMED for urbanisation published in Kjeldsen (2010) in which PRUAF is calculated from BFIHOST is not correctly applied in WINFAP-FEH v3.0.003. Significant differences occur only on urban catchments that are highly permeable. This is discussed in Wallingford HydroSolutions (2016) Error! Bookmark not defined.

4.3 Search for donor sites for QMED (if applicable)

Comment on potential donor sites	The gauging station on the River Clwyd at Ruthin Weir (66005) was chosen as a donor site. It is the nearest					
	gugaing station that is hydrologically similar.					

4.4 Donor sites chosen and QMED adjustment factors

NRFA no.	Method (AM or POT)	Adjustment for climatic variation?	QMED from flow data (A)	QMED from catchment descriptors (B)	Adjustment ratio (A/B)
66005	AM	No	17.210	28.487	0.604

4.5 Derivation of pooling groups

Subject Site code from whose descriptors group was derived	as with reasons	Weighted average L- moments
---	-----------------	-----------------------------------

Site code from whose descriptors group was derived	Subject site treated as gauged?	Changes made to default pooling group, with reasons	Weighted average L- moments				
SWIN01-02	No	Stations removed from pooling group: 28058 (Henmore Brook @ Ashbourne) – negative L-Skew	Parameters: L-CV: 0.257 L-SKEW: 0.212				
		The final pooling group has 18 stations with a 511 year record.					
		Heterogeneity test statistic = 1.6131					
Note: Pooling groups were derived	Note: Pooling groups were derived using the procedures from Science Report SC050050 (2008).						

4.6 Derivation of flood growth curves at subject sites

Site code	Method	Distribution used and reason for choice	Note any urban adjustment or permeable adjustment	Parameters of distribution	Growth factor for 100-year return period / 1% AEP			
SWIN0 1-02	Р	P3 – Recommended distribution with the best fit	WINFAP v5	Location: 0.279 Scale: 0.340 Shape: 2.441	2.812			
Notes Methods: SS – Single site; P – Pooled; ESS – Enhanced single site; J – Joint analysis Urban adjustments are all carried out using the method of Kieldsen (2010).								

Growth curves were derived using the procedures from Science Report SC050050 (2008).

Distribution	Growth Curve for the following return periods (in years)								
	2 5 10 30 50 100 200 500 100								1000
GEV	1	1.463	1.789	2.311	2.563	2.916	3.283	3.794	4.201
P3	1	1.494	1.823	2.308	2.524	2.812	3.093	3.459	3.731

4.7 Flood estimates from the statistical method

Site code	Flood peak (m ³ /s) for the following return periods (in years)								
	2	5	10	20	50	100	200	500	1000
SWIN01-02	5.809	8.681	10.589	12.389	14.665	16.334	17.970	20.093	21.676

6 REVITALISED FLOOD HYDROGRAPH 2 (REFH2) METHOD

6.1 Application of ReFH2 method

What is the purpose of	For providing a comparison for peak flow estimates and to derive
applying this method?	hydrograph shapes.

6.2 Parameters for ReFH2 model

Site code	Method	Tp _{rural} (hours)	Tp _{urban} scaling factor	C _{max} (mm)	PR _{imp}	BL (hours)	BR
SWIN01-02	CD	3.62	0.75	310.94	0.7	40.61	1.43
	otion of any flo ysis carried ou						
Methods: OPT: C	ptimisation, BR: I	Baseflow recess	sion fitting, CD:	Catchment desc	criptors, DT: Data tr	ansfer (give deta	ails)

6.3 Design events for ReFH2 method: Lumped catchments

Site code	Urban or rural	Season of design event (summer or winter)	Storm duration (hours)
SWIN01-02	Urban	Winter	6.5

6.4 Flood estimates from the ReFH2 method

Site code	Flood peak (m ³ /s) for the following return periods (in years)			
	2	20	100	1,000
SWIN01-02	6.51	13.17	19.86	32.45

7 DISCUSSION AND SUMMARY OF RESULTS

	Ratio of peak flow to FEH Statistical peak				
Site code	Return period 2 years / 50% AEP	Return period 100 years / 1% AEP			
	ReFH2	ReFH2			
SWIN01-02	1.12	1.13			

7.1 Comparison of results from different methods

7.2 Final choice of method

Choice of method and reasons	The final choice of method is the FEH Statistical Method, which is the preferred approach. The hydrograph shape will be derived from ReFH2.
How will the flows be applied to a hydraulic model?	The flows derived for site code SWIN01-02 will be area weighted. Flows will be applied as two point inflows at the upstream extent of Swinchiard Brook (SWIN01 upper) and the unnamed watercourse (SWIN02). The flows derived for the downstream extent of to Swinchiard Brook (SWIN01 lower) will be applied as a lateral inflow to Swinchiard Brook downstream of Aber Road to the confluence with the River Dee.

7.3 Assumptions, limitations and uncertainty

List the main assumptions made (specific to this study)	FEH catchment boundary/descriptors are accurate, QMED estimate and growth curve accurately reflects the subject catchment. No transfer of water in or out of the catchment via the sewer network.
Discuss any particular limitations	FEH Statistical method not suitable for estimating 0.1% AEP flows, which have been scaled based upon ReFH2 peak flows.
Comment on the suitability of the results for future studies	The model has been specifically built to assess flood risk to the development site. Therefore, it may not be suitable for assessing flood risk within other parts of the catchment.
Give any other comments on the study	None.

7.4 Checks

Are the results consistent, for example at confluences?	n/a
What do the results imply regarding the return periods / frequency of floods during the period of record?	n/a
What is the range of 100-year / 1% AEP growth factors? Is this realistic?	The 100 year growth factor is 2.812, which is considered realistic.
If 1000-year / 0.1% AEP flows have been derived, what is the range of ratios for 1000-year / 0.1% AEP flow over 100-year / 1% AEP flow?	The ratio between ReFH2 1% and 0.1% AEP event flows is 1.63.
How do the results compare with those of other studies? Explain any differences and conclude which results should be preferred.	n/a
Are the results compatible with the longer-term flood history?	No flows or return period have provided for the 2000 flood event, thererofre no comparison could be made.

Describe any other checks on the	None.
results	

7.5 Final results

Site code	Flood peak (m ³ /s) for the following return periods (in years)			
	2	20	100	1,000
SWIN01 upper catchment	5.44	11.61	15.30	24.99
SWIN01 lower catchment	0.11	0.22	0.30	0.48
SWIN02	0.26	0.56	0.74	1.20

If flood hydrographs are needed for the next stage of the study,	Hydrographs are provided in the
where are they provided? (e.g. give filename of spreadsheet,	Hydraulic Modeling Study Report
hydraulic model, or reference to table below)	

ANNEX

Winfap 5 report

UK Design Flood Estimation

Summary of ESS/Pooled Estimation Analysis using the Flood Estimation Handbook Statistical Method

Date of creation:	19-01-2023 13:34:00
Software:	WINFAP Version: 5.0.8181 (30330)
Peak Flow dataset:	Peak Flow Dataset 11.0.0
Supplementary data used:	No

Site details

Site number: 592599455 Site name: FEH_Catchment_Descriptors_324300_373550_v4_0_0 Site location: SJ 24300 73550 324300 373550 Easting: Northing: Catchment area: 18.20 km² SAAR: 849 mm BFIHOST19: 0.404 FPEXT: 0.016 FARL: 0 990 URBEXT2000: 0.0504

Analysis settings

At-site data At-site data present No

Urbanisation settings User defined: Yes 1.44 km² 70.00% Urban area: PRimp: Impervious Factor: 0.400 UAF: 1.06745

Growth curve settings

Distance Measure Method: Small catchment Pooling group URBEXT2000 Threshold: 0.030 Deurbanise Pooling Group L-moments: Yes

QMED settings

Use at-site data: No Method: Donor Station(s)

Growth curve data and results

Pooling Group

Station	Distance	Years of data	QMED AM	L-CV Observed	L-CV Deurbanised	L-SKEW Observed	L-SKEW Deurbanised	Discordancy
25019 (Leven @ Easby)	0.162	43	5.677	0.334	0.335	0.373	0.372	0.819
26016* (Gypsey Race @ Kirby Grindalythe)	0.346	21	0.106	0.258	0.258	0.314	0.314	0.971
27010 (Hodge Beck @ Bransdale Weir)	0.432	41	9.420	0.224	0.224	0.293	0.293	1.492
44008* (South Winterbourne @ Winterbourne Steepleton)	0.510	23	0.624	0.344	0.344	0.238	0.237	0.779
41020 (Bevern Stream @ Clappers Bridge)	0.542	52	13.780	0.201	0.203	0.166	0.164	0.941
7011 (Black Burn @ Pluscarden Abbey)	0.566	9	5.205	0.491	0.491	0.521	0.521	3.632
26017* (Ings Beck @ South Newbald)	0.571	21	0.522	0.203	0.205	0.054	0.053	0.642
49005 (Bolingey Stream @ Bolingey Cocks Bridge)	0.600	11	5.777	0.262	0.263	0.207	0.206	2.545
27051 (Crimple @ Burn Bridge)	0.634	49	4.564	0.217	0.218	0.143	0.142	0.158
26014* (Water Forlornes @ Driffield)	0.654	19	0.623	0.251	0.252	0.188	0.187	0.150
44013* (Piddle @ Little Puddle)	0.687	18	1.854	0.299	0.300	0.181	0.180	0.448
24007 (Browney @ Lanchester)	0.733	15	10.981	0.222	0.222	0.212	0.211	0.910
9006 (Deskford Burn @ Cullen)	0.758	11	21.783	0.290	0.290	0.139	0.139	0.698
53017 (Boyd @ Bitton)	0.774	48	13.908	0.240	0.242	0.081	0.079	0.877
27073* (Brompton Beck @ Snainton Ings)	0.797	39	0.844	0.189	0.190	0.046	0.045	0.694
44011 (Asker @ Bridport East Bridge)	0.813	26	15.958	0.225	0.227	0.172	0.169	0.181
44003 (Asker @ Bridport)	0.813	14	12.354	0.224	0.226	0.170	0.168	1.744
41022 (Lod @ Halfway Bridge)	0.838	51	15.900	0.295	0.297	0.183	0.181	0.321
Total		511						

Short records Discordant No Pooling No Pooling, no QMED

Pooling Group Rejected Stations

Station	Distance	Years of data	QMED AM	L-CV Observed	L-CV Deurbanised	L-SKEW Observed	L-SKEW Deurbanised
28058 (Henmore Brook @ Ashbourne)	0.612	13	10.600	0.145	0.147	-0.046	-0.049

Growth curve L-moments

Urban L-CV: 0.257 Urban L-Skewness: 0.212 Rural L-CV: 0.265 Rural L-Skewness: 0.203

Rural fitted parameters

Urban	fitted	parameters	

Distribution	Location	Scale	Shape	н	Bound	Distribution	Location	Scale	Shape	н	Bound
GL	1.000	0.270	-0.203		-0.332	GL	1.000	0.261	-0.212		-0.233
GEV	0.852	0.401	-0.051		-7.022	GEV	0.857	0.385	-0.064		-5.135
P3	0.221	0.335	2.651		0.221	P3	0.279	0.340	2.441		0.279
KAP3	0.925	0.328	-0.134	-0.400	-1.517	КАРЗ	0.928	0.315	-0.145	-0.400	-1.245

Goodness of fit

- GL: 3.8374 GEV: 1.5935 * P3: 0.2028 * GP: -3.4538
- KAP3: 3.0239

* Distribution gives an acceptable fit (absolute Z value < 1.645)

Heterogeneity Standardised test value H2: 1.6131

The pooling group is possibly heterogeneous and a review of the pooling group is optional.

Standardised growth curves

Rural				
Return period	GL	GEV	P3	КАРЗ
2	1.000	1.000	1.000	1.000
5	1.433	1.477	1.506	1.452
10	1.749	1.808	1.839	1.777
20	2.090	2.138	2.152	2.117
25	2.208	2.246	2.250	2.231
30	2.307	2.334	2.329	2.327
50	2.604	2.584	2.546	2.605
75	2.860	2.786	2.716	2.838
100	3.054	2.932	2.835	3.011
200	3.570	3.291	3.117	3.455
500	4.371	3.785	3.482	4.108
1000	5.083	4.174	3.754	4.657

QMED data and results

Donor selection criteria								
Only sites suitable for QMED:	Yes							
URBEXT2000:	< 0.030							
Donor adjusted FSE:	1.409							
No. of donors:	1							

Donor stations

Station	Distance	URBEXT	Use QMED obs deurbanised	QMED obs	QMED deurbanised	QMED CDs urban	QMED CDs rural	Centroid X	Centroid Y	Area	SAAR	BFIHOST19	FARL	Years of data	QMED suitability	Pooling suitability	Weight
*FEH_Catchment_Descriptors_324300_373550_v4_0_0 @ SJ 24300 73550)		0.050						321825	371375	18.200	849	0.404	0.990				
66005 (Clwyd @ Ruthin Weir)	22.96	0.005	Yes	17.210	17.110	28.487	28.487	309817	351811	96.392	958	0.471	0.995	45	Yes	Yes	0.291

Unused Donor stations

Station	Distance	URBEXT	Use QMED obs deurbanised	QMED obs	QMED deurbanised	QMED CDs urban	QMED CDs rural	Centroid X	Centroid Y	Area	SAAR	BFIHOST19	FARL	Years of data	QMED suitability	Pooling suitability	Weight
66004 (Wheeler @ Bodfari)	6.68	0.004	Yes	3.699	3.680	9.282	9.282	315144	371478	62.905	863	0.613	0.975	47	Yes	No	0.424
67008 (Alyn @ Pont-y-Capel)	12.37	0.029	Yes	21.740	20.963	42.347	42.347	323013	359066	225.653	917	0.542	0.990	56	Yes	Yes	0.361
67009 (Alyn @ Rhydymwyn)	13.88	0.002	Yes	8.780	8.763	20.850	20.850	319020	357784	81.595	968	0.527	0.990	65	Yes	Yes	0.349
66001 (Clwyd @ Pont-y-Cambwll)	16.53	0.006	Yes	51.309	50.938	69.930	69.930	309230	360665	404.558	910	0.539	0.993	46	Yes	No	0.331
68020 (Gowy @ Bridge Trafford)	30.40	0.017	Yes	15.458	15.141	17.819	17.819	351376	364257	148.657	729	0.541	0.994	42	Yes	No	0.250
66002 (Elwy @ Pant yr Onen)	30.91	0.001	Yes	65.600	65.546	82.732	82.732	291474	365507	218.510	1145	0.433	0.979	12	Yes	No	0.248
66006 (Elwy @ Pont-y-Gwyddel)	32.03	0.001	Yes	74.400	74.332	79.962	79.962	290505	364668	191.355	1185	0.425	0.980	47	Yes	Yes	0.242
67006 (Alwen @ Druid)	33.35	0.001	Yes	78.140	78.102	72.129	72.129	296642	349518	185.480	1305	0.392	0.897	61	Yes	No	0.236
67005 (Ceiriog @ Brynkinalt Weir)	35.53	0.001	Yes	30.000	29.962	58.390	58.390	317500	336107	111.718	1198	0.403	1.000	24	Yes	No	0.226

 QMED

 Rural:
 5.442 m³/s

 Urban:
 5.809 m³/s

Flood Frequency Curve

Rural Flood Frequency Curve

Rural Flood Fre	quency Curv	e			Urban Flood Frequency Curve							
Return period	GL (m ³ /s)	GEV (m ³ /s)	P3 (m ³ /s)	KAP3 (m ³ /s)	Return period	GL (m ³ /s)	GEV (m ³ /s)	P3 (m ³ /s)	KAP3 (m ³ /s)			
2	5.442	5.442	5.442	5.442	2	5.809	5.809	5.809	5.809			
5	7.799	8.039	8.196	7.903	5	8.254	8.499	8.681	8.360			
10	9.518	9.842	10.009	9.673	10	10.055	10.391	10.589	10.214			
20	11.374	11.638	11.711	11.521	20	12.012	12.293	12.389	12.166			
25	12.014	12.222	12.243	12.143	25	12.690	12.915	12.952	12.826			
30	12.556	12.702	12.673	12.662	30	13.264	13.428	13.408	13.378			
50	14.170	14.063	13.858	14.176	50	14.982	14.889	14.665	14.996			
75	15.565	15.164	14.780	15.446	75	16.473	16.078	15.646	16.359			
100	16.623	15.957	15.427	16.387	100	17.606	16.939	16.334	17.374			
200	19.430	17.912	16.962	18.803	200	20.629	19.075	17.970	19.992			
500	23.789	20.601	18.952	22.355	500	25.355	22.043	20.093	23.874			
1000	27.665	22.717	20.433	25.344	1000	29.586	24.404	21.676	27.170			

ReFH2 1 in 100 year report

UK Design Flood Estimation

Generated on Thursday, January 19, 2023 12:20:57 PM by ModellingMold Printed from the ReFH2 Flood Modelling software package, version 3.3.8355.27598

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH2)

Site details	Checksum: 842C-0812
Site name: FEH_Catchment_Descriptors_324300_373550_v4_0_0	
Easting: 324300	
Northing: 373550	
Country: England, Wales or Northern Ireland	
Catchment Area (km ²): 18.47	
Using plot scale calculations: No	
Model: 2.3	
Site description: None	
Model run: 100 year Summary of results	
Rainfall - FEH 2013 model (mm): 75.76 Total runoff (M	1L): 446.11
Total Rainfall (mm): 53.55 Total flow (ML): 988.91
Peak flow (m ³)	/s): 19.86

Peak Rainfall (mm):

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

10.44

* Indicates that the user locked the duration/timestep

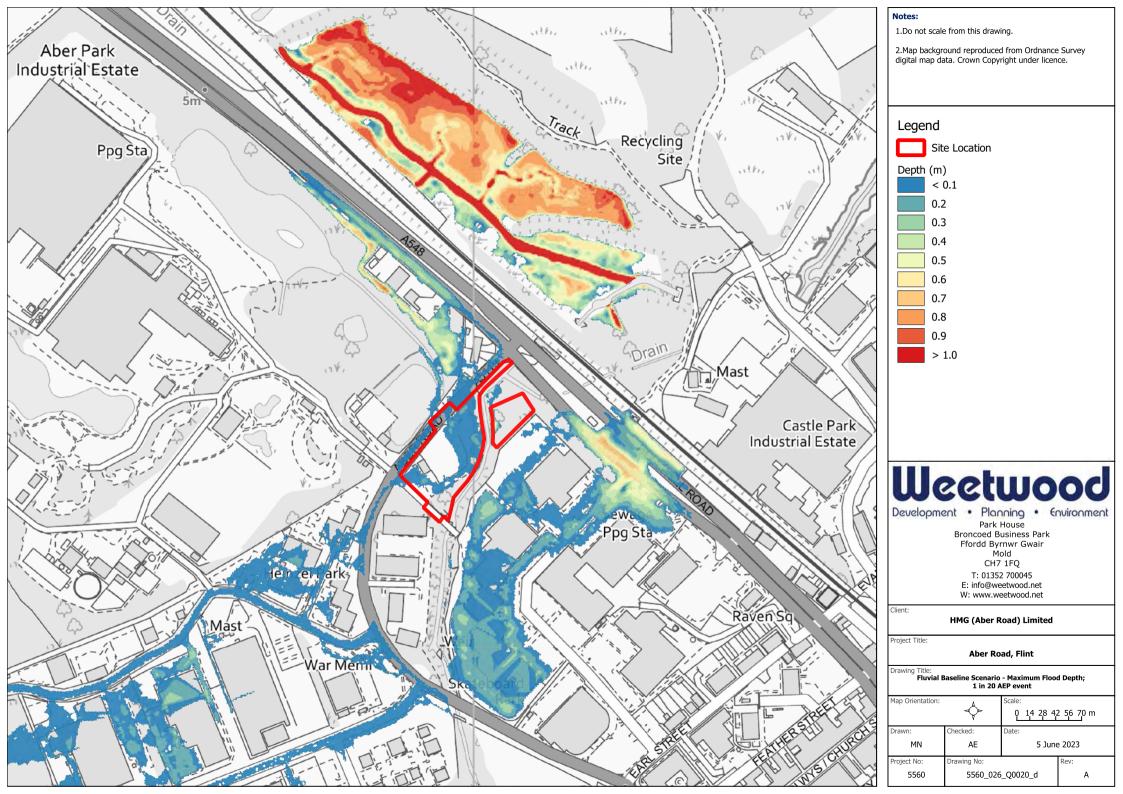
Rainfall parameters (Rainfall - FEH 2013 model)

Name	Value	User-defined?
Duration (hh:mm:ss)	06:30:00	No
Timestep (hh:mm:ss)	00:30:00	No
SCF (Seasonal correction factor)	0.75	No
ARF (Areal reduction factor)	0.95	No
Seasonality	Winter	No
Loss model parameters		
Name	Value	User-defined?
Cini (mm)	109.66	No
Cmax (mm)	310.94	No
Use alpha correction factor	No	No
Alpha correction factor	n/a	No
Routing model parameters		
Name	Value	User-defined?
Tp (hr)	3.62	No
Up	0.65	No

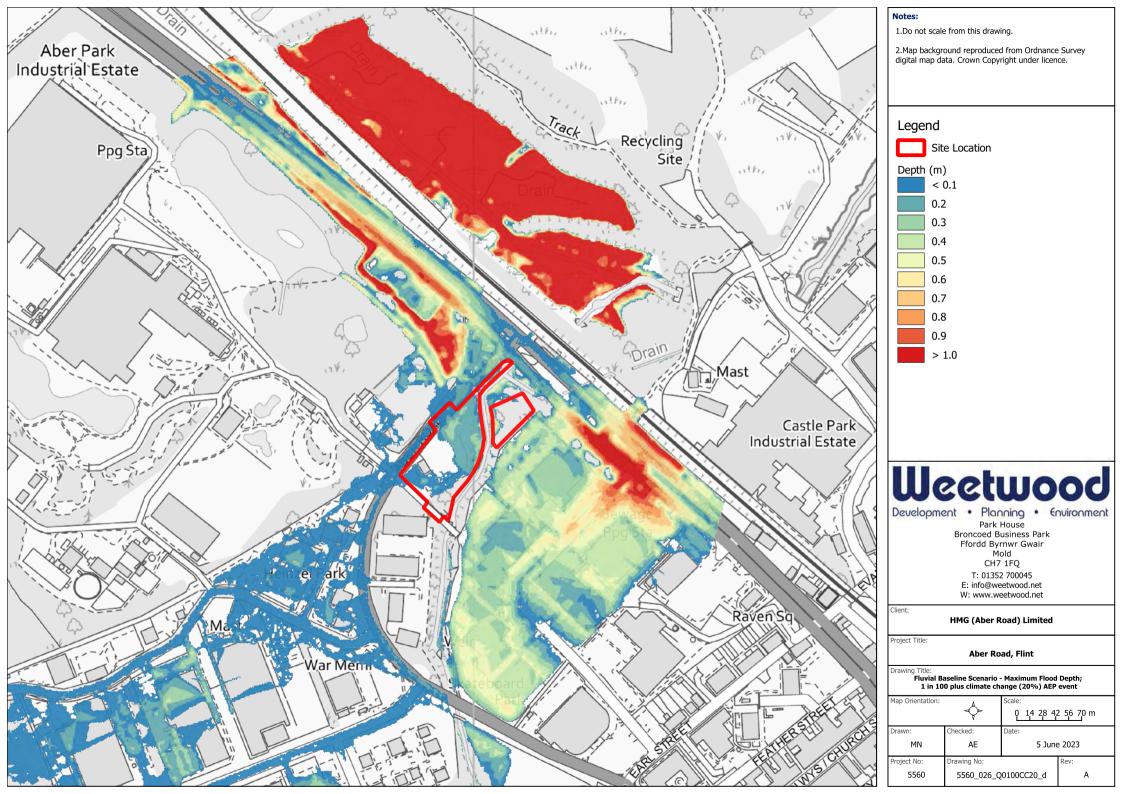
Uk	0.8	No
Baseflow model parameters		
Name	Value	User-defined?
BF0 (m ³ /s)	0.74	No
BL (hr)	40.61	No
BR	1.28	No
Urbanisation parameters		
Name	Value	User-defined?
Urban area (km²)	1.46	No
Urbext 2000	0.05	No
Impervious runoff factor	0.7	No
Imperviousness factor	0.4	No
Tp scaling factor	0.75	No
Depression storage depth (mm)	0.5	No
Exporting drained area (km ²)	0.00	Yes
Sewer capacity (m³/s)	0.00	Yes

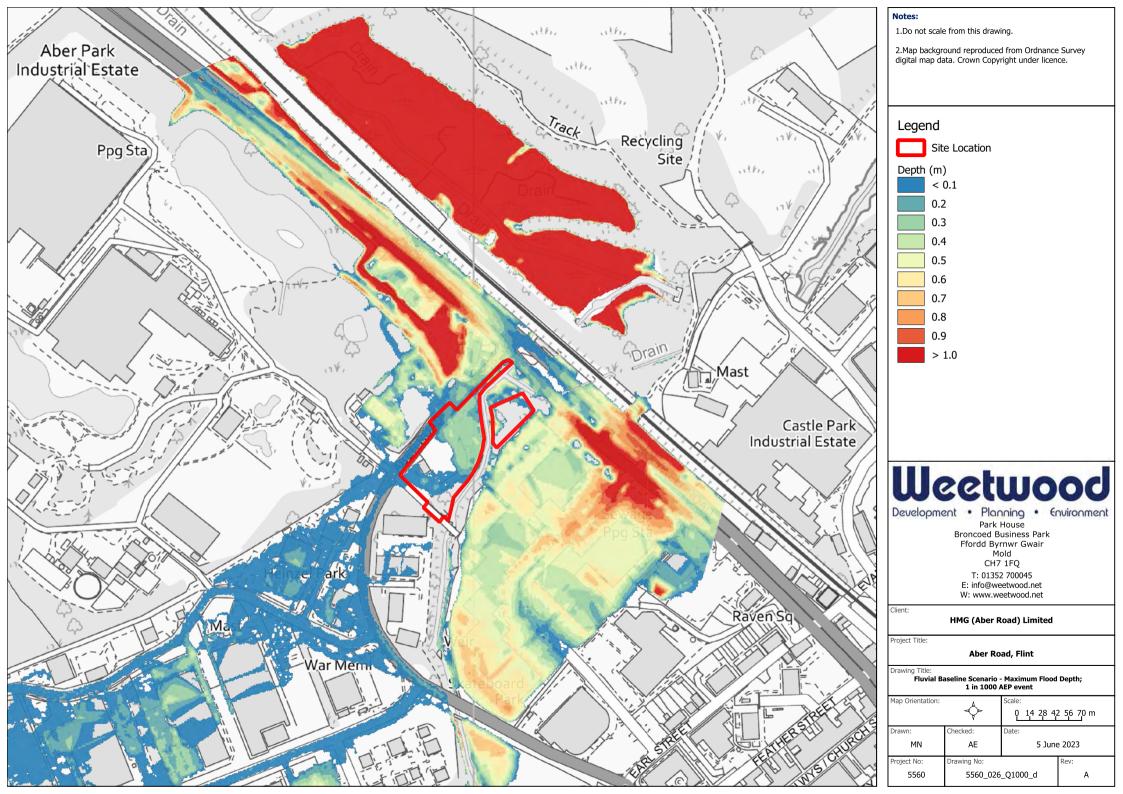
Page 4 of 4 Printed from the ReFH2 Flood Modelling software package, version

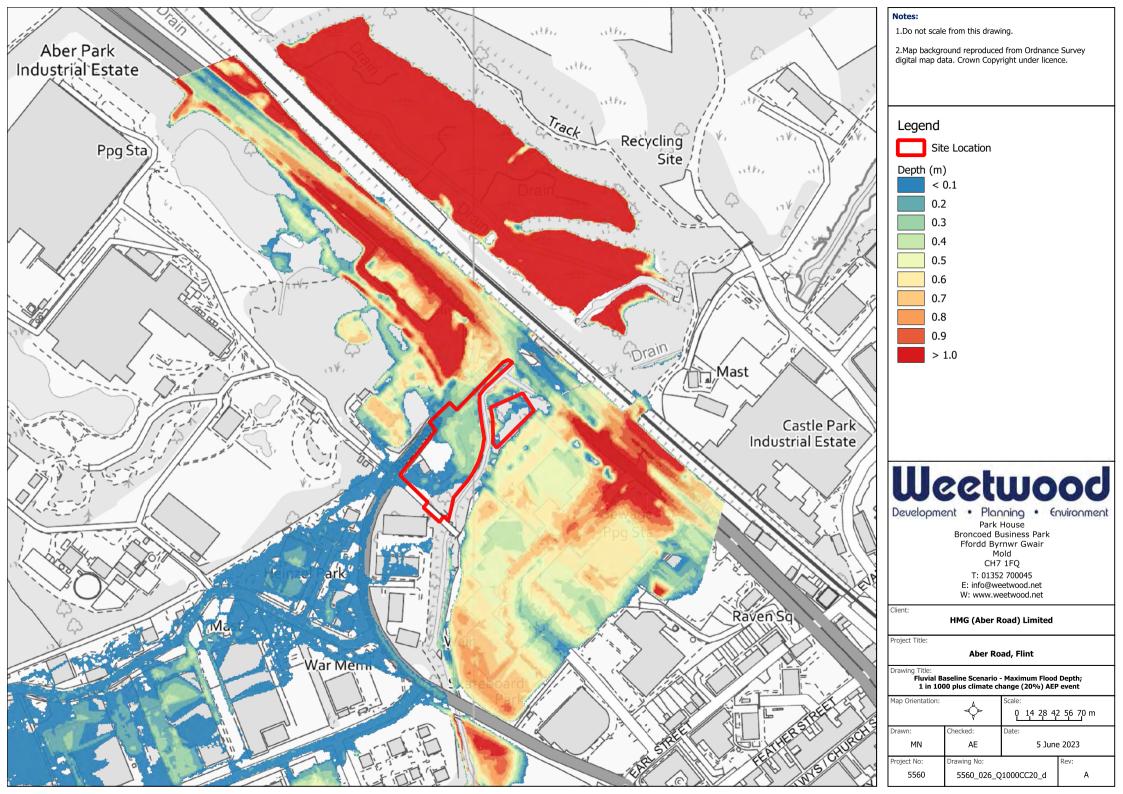
ANNEX D

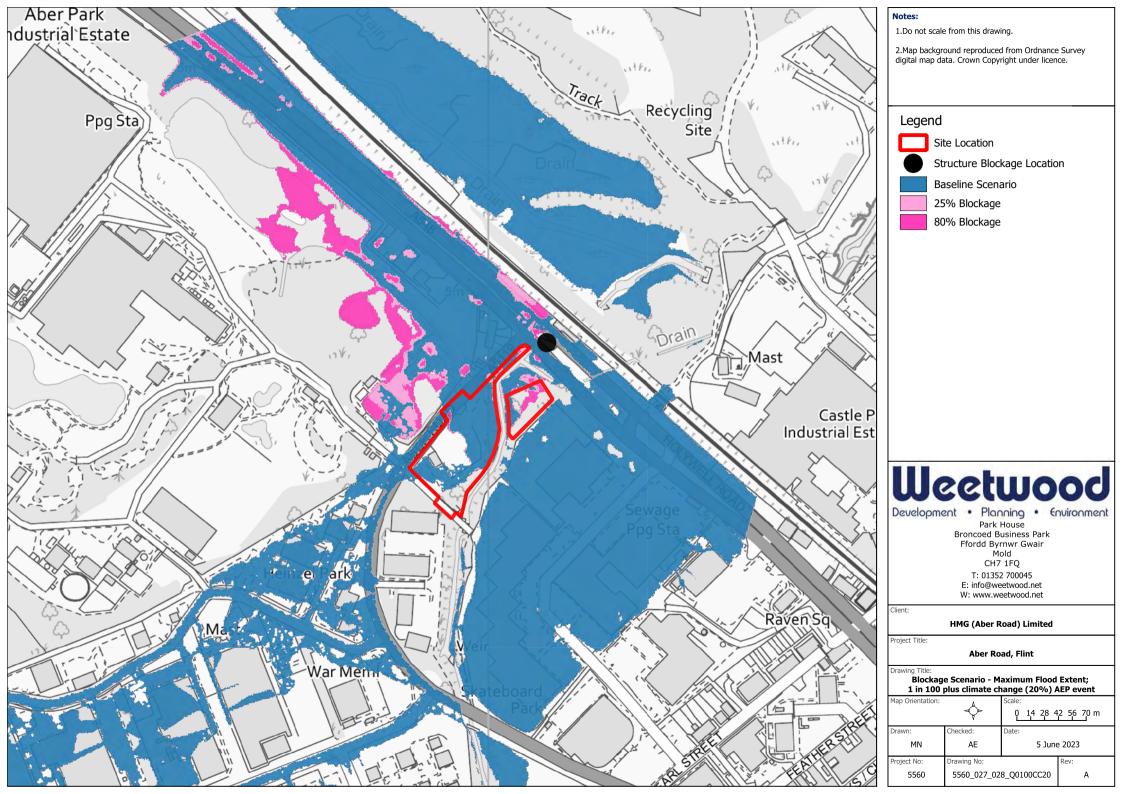

Digital Model Files

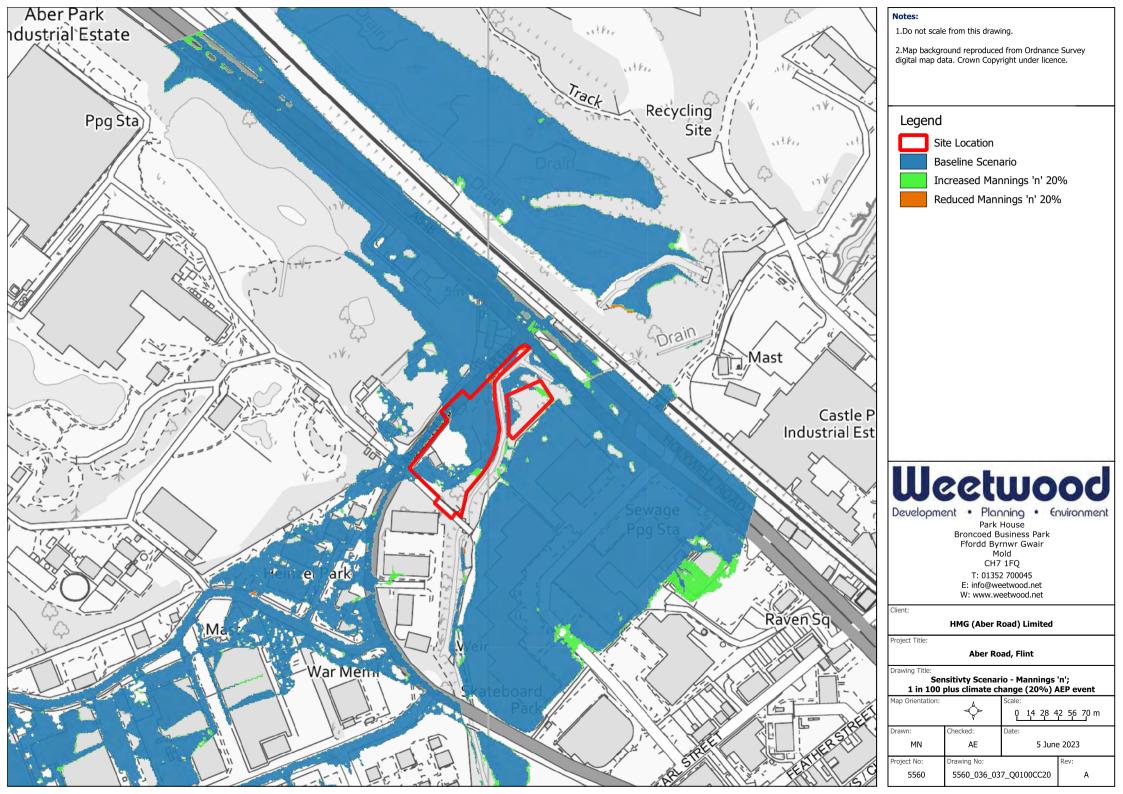

Available on request




ANNEX E


Model Results - Baseline





ANNEX F

Model Results - Sensitivity

Delivering client focussed services nationally

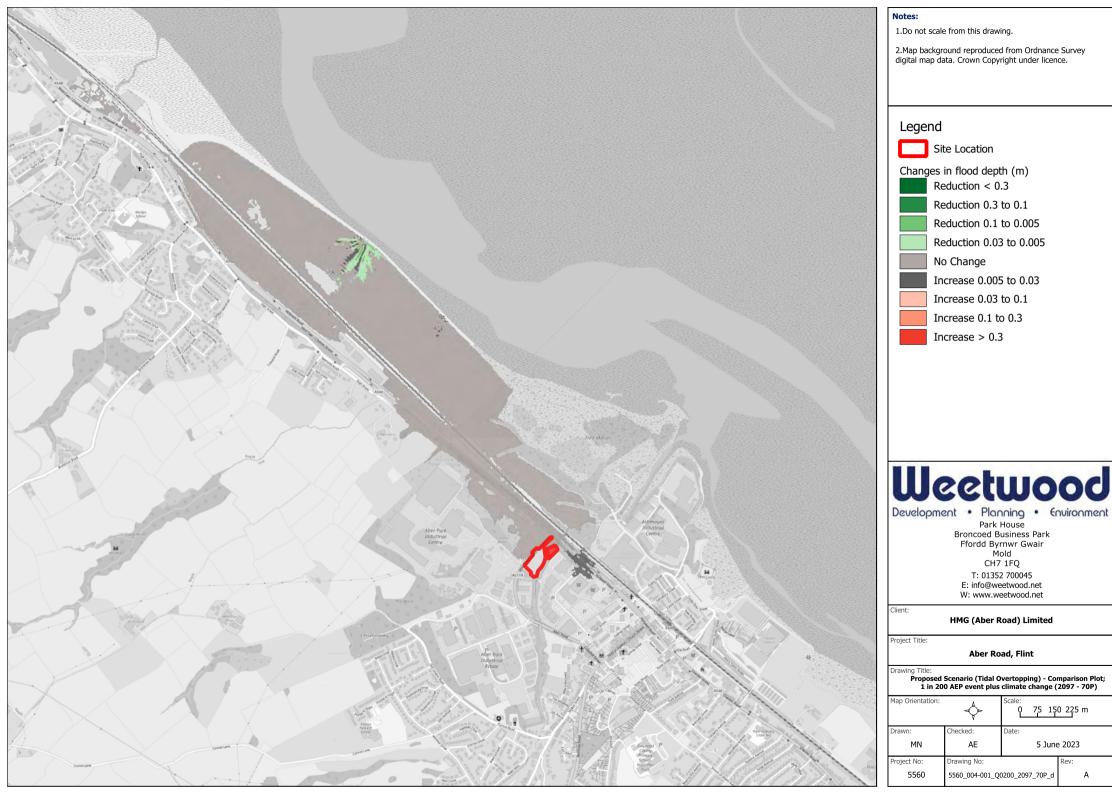
Flood Risk Assessments Flood Consequences Assessments Surface Water Drainage Foul Water Drainage Environmental Impact Assessments River Realignment and Restoration Water Framework Directive Assessments Environmental Permit and Land Drainage Applications Sequential, Justification and Exception Tests Utility Assessments Expert Witness and Planning Appeals Discharge of Planning Conditions

www.weetwood.net

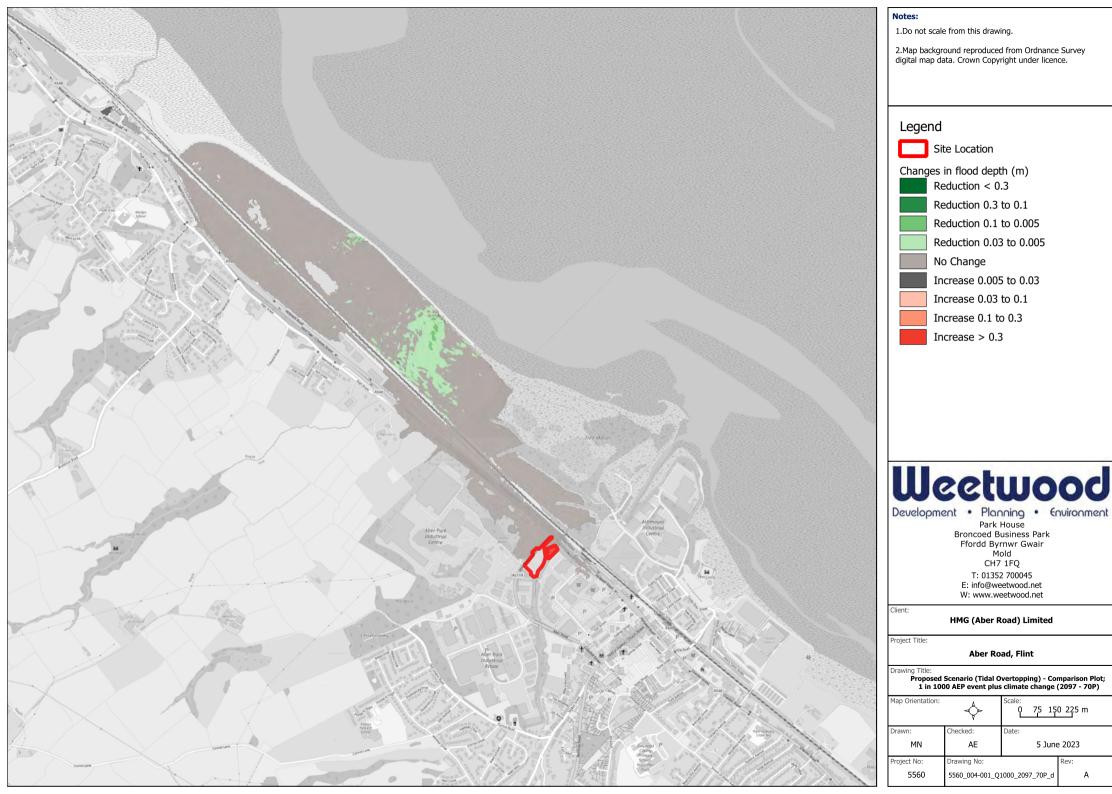
APPENDIX F

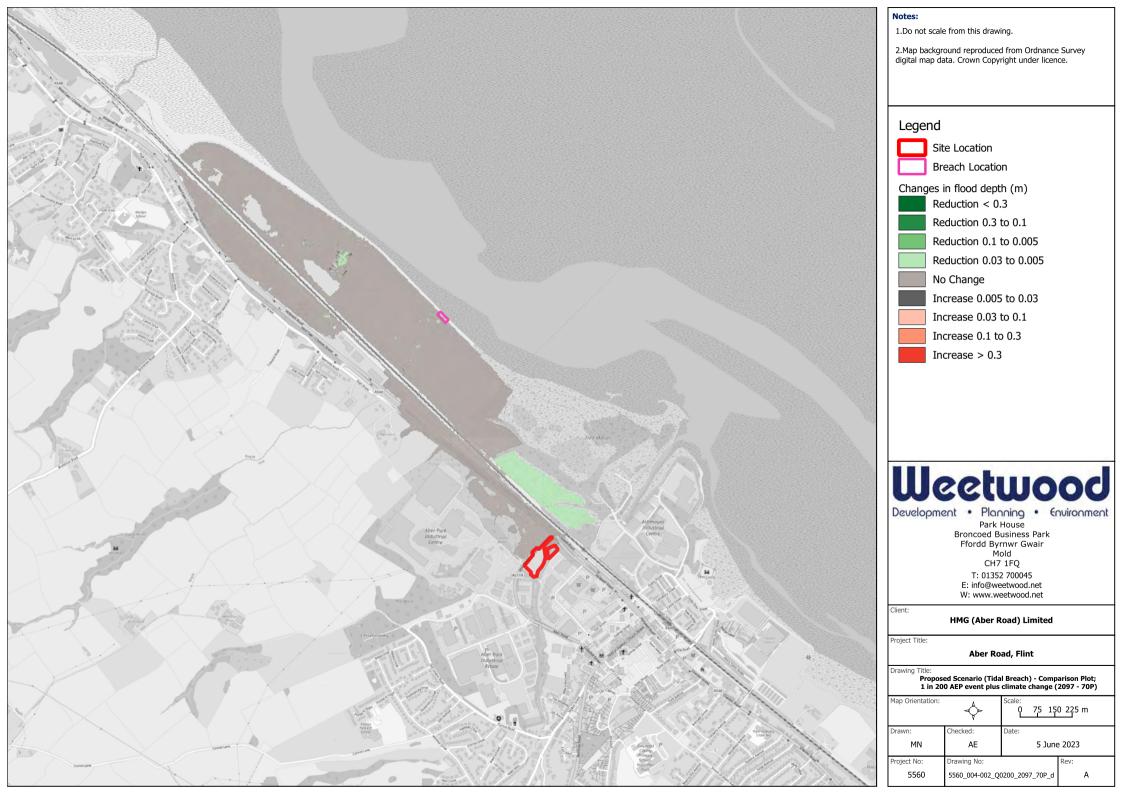
Preliminary Proposed Site Levels

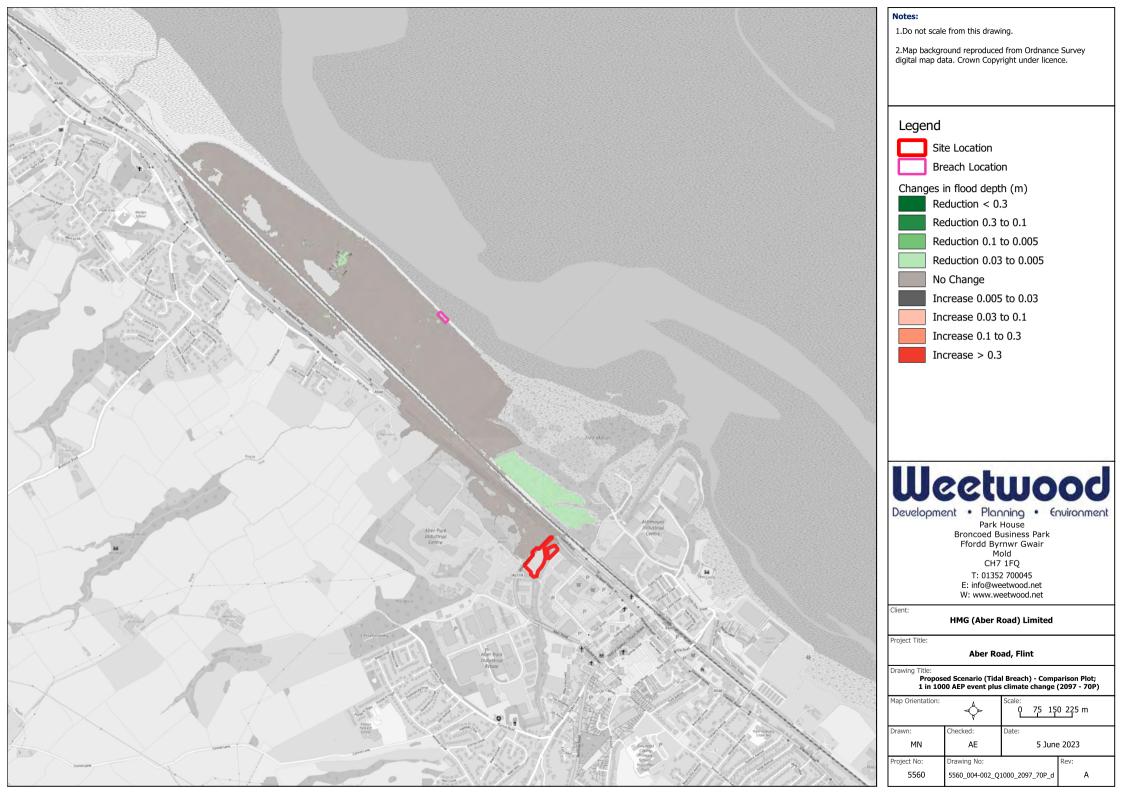
- ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE.

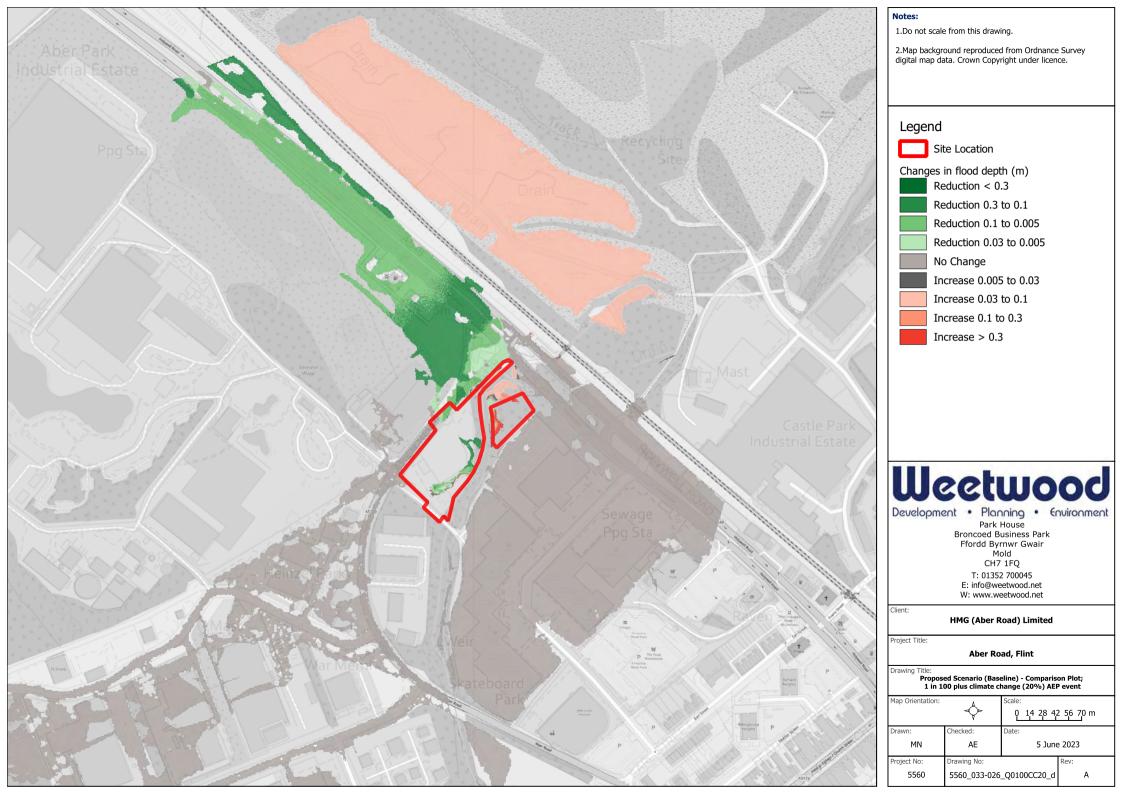


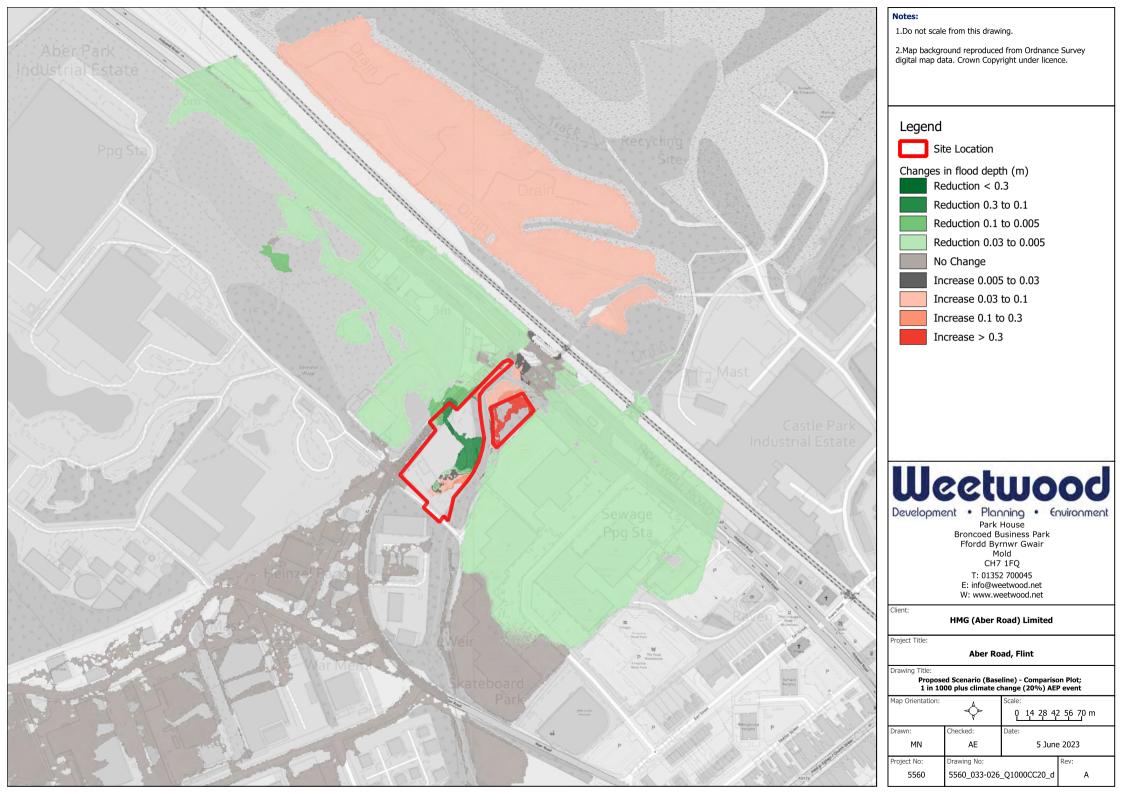
) S

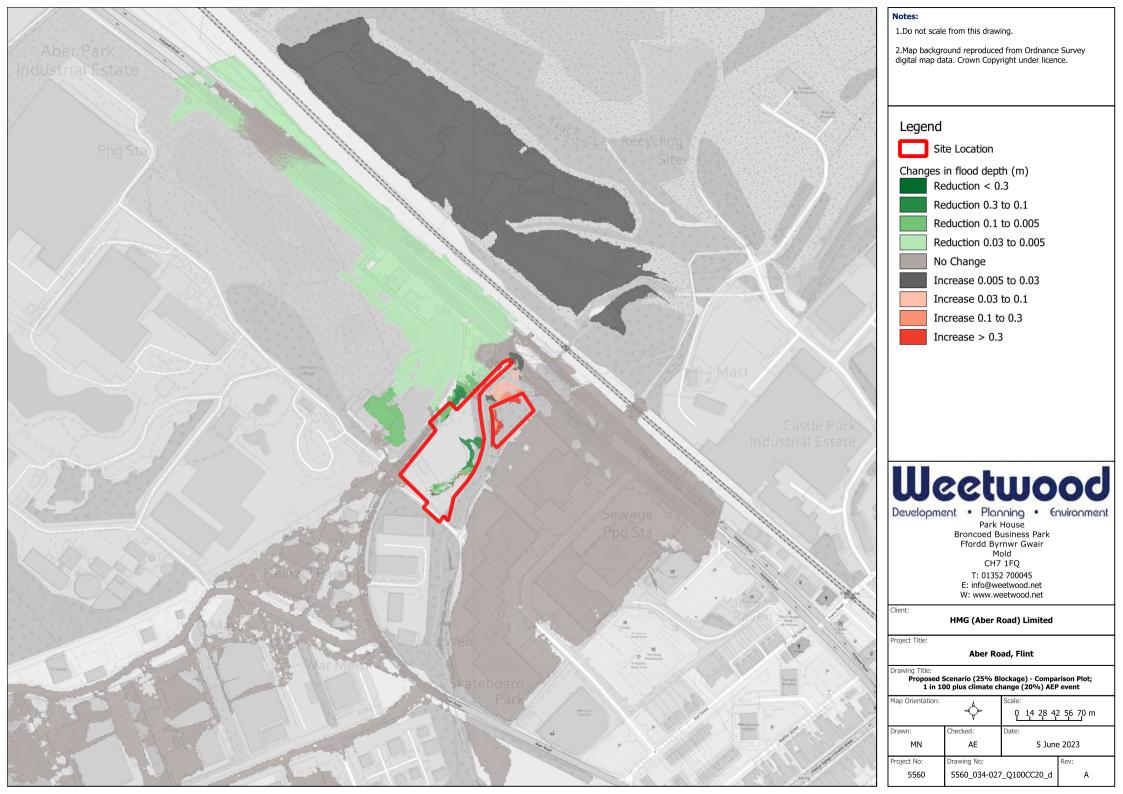

APPENDIX G

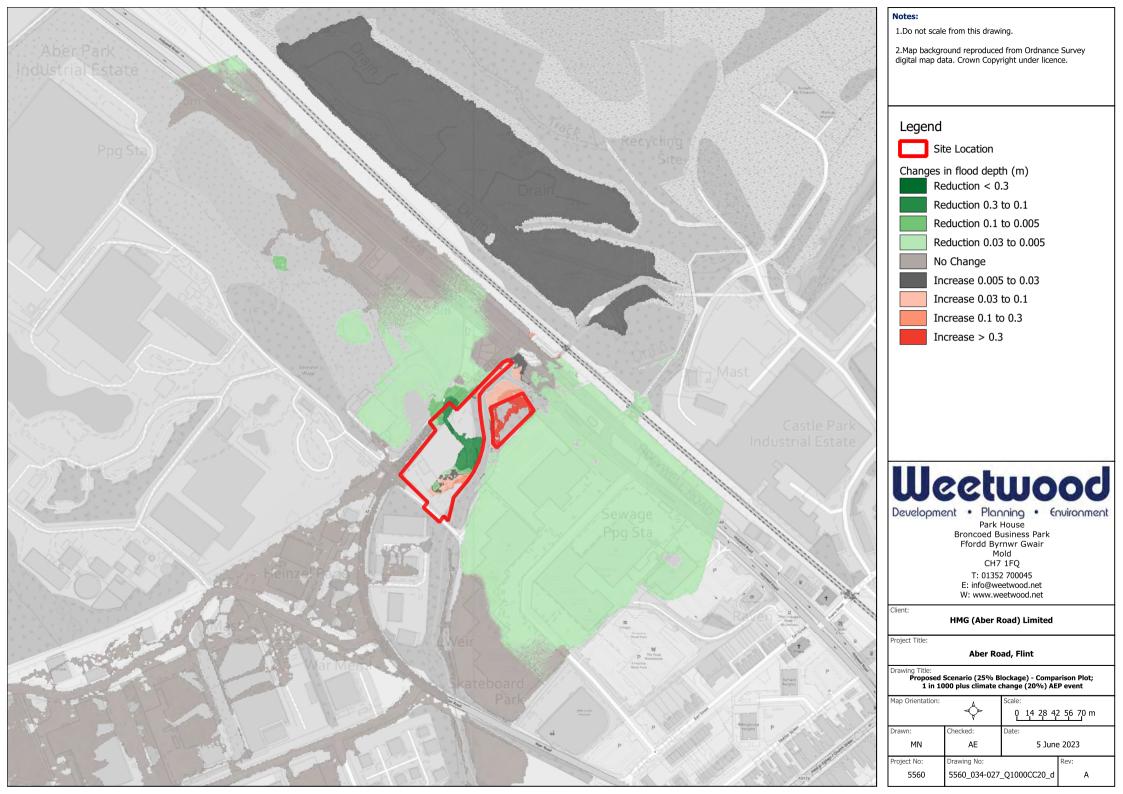

Flood Risk Comparison Plots

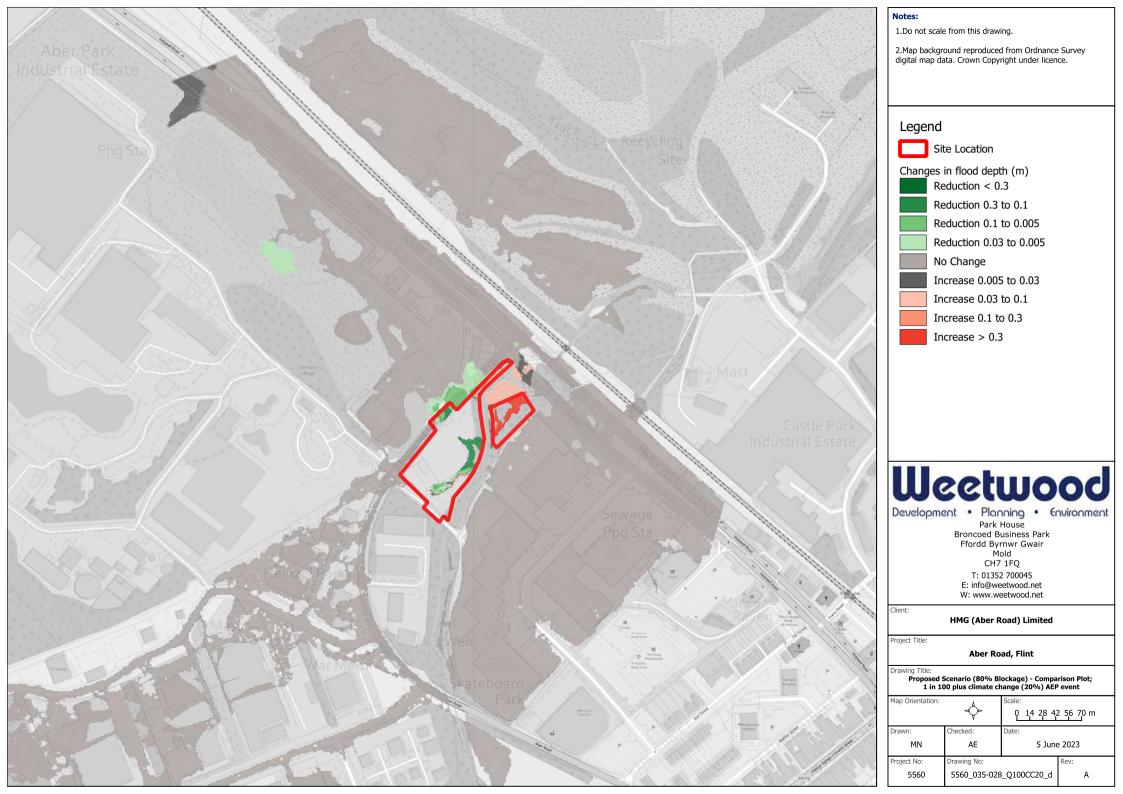


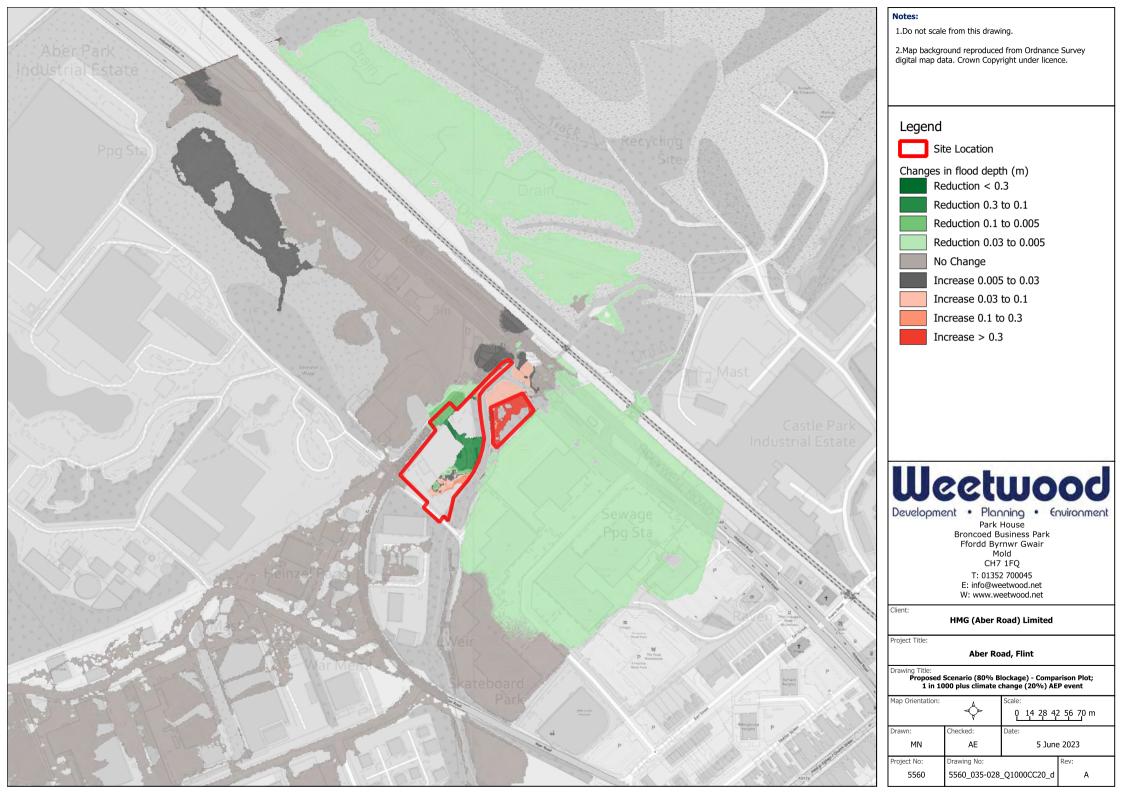

2011

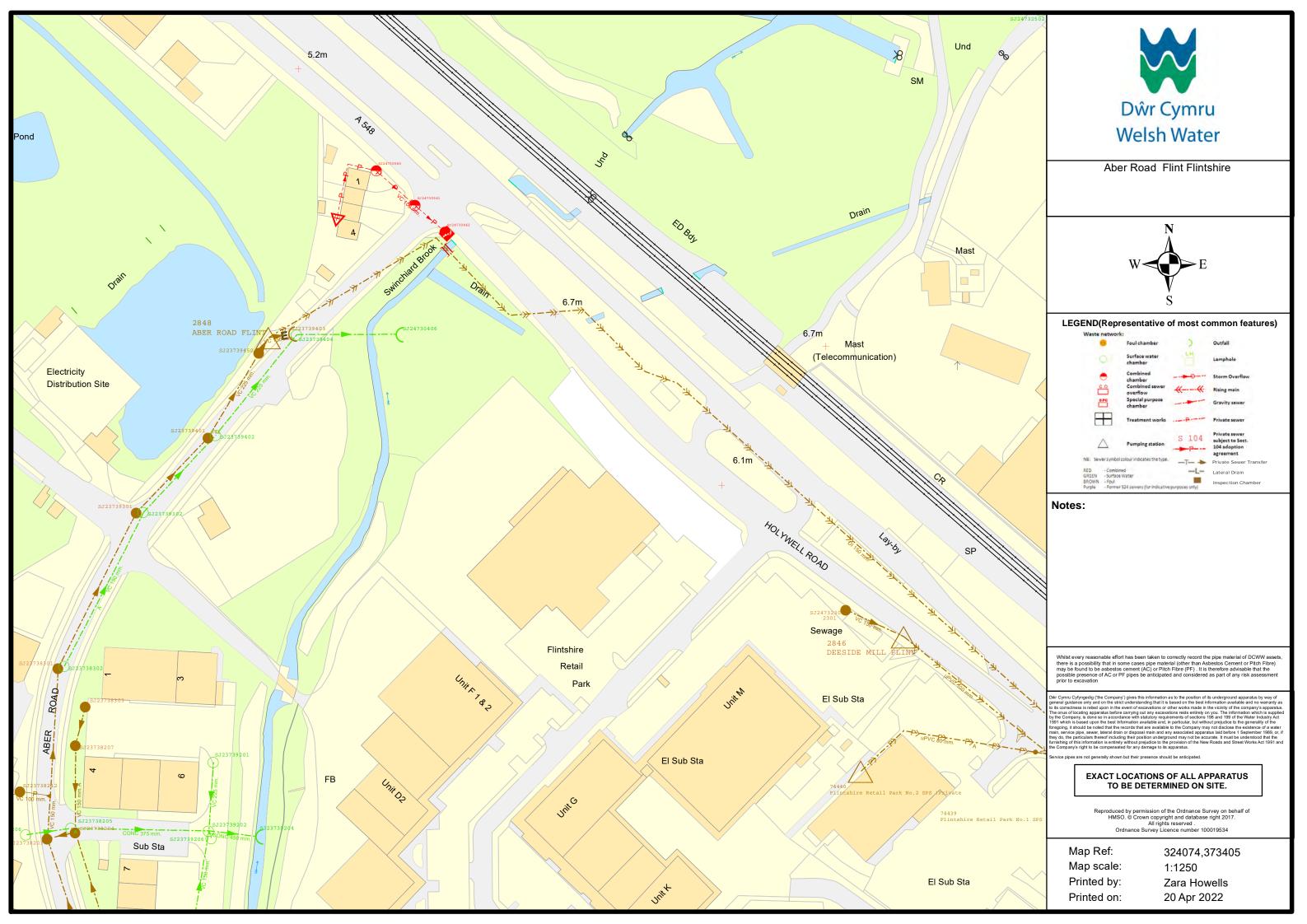

А











APPENDIX H

Dŵr Cymru Welsh Water Public Sewer Record

APPENDIX I

Greenfield Runoff Calculations

Weetwood		Page 1
Suite 1 Park House		
Broncoed Bus Park		Contra-
Wrexham Rd Mold		Micro
Date 17/06/2022 14:42	Designed by ModellingMold	Drainage
File	Checked by	Diamage
Micro Drainage	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years)1SAAR (mm)869Urban0.000Area (ha)1.000Soil0.450RegionNumberRegion9

Results 1/s

QBAR Rural 5.7 QBAR Urban 5.7 Q1 year 5.0 Q1 year 5.0 Q30 years 10.0 Q100 years 12.3

APPENDIX J

Peak Runoff Rate from Existing Site

The peak discharge rates of surface water runoff from the impermeable areas at the site have been calculated based on the Modified Rational Method¹⁷.

The following parameters have been obtained from the maps in Volume 3 of the Wallingford Procedure:

M5-60 minute rainfall depth:	18 mm
Ratio of M5-60 to M5-2 day rainfall:	0.35
Average Annual Rainfall:	869 mm
Winter Rain Acceptance Potential/ Soil Type :	0.45
The Urban Catchment Wetness Index (UCWI) value:	94.4

A time of concentration of 15 minutes has been used comprising a time of entry of 5 minutes and a time of flow of 10 minutes.

A rainfall estimation calculation has been carried out to convert the M5-60 minute rainfall to the 5-minute duration rainfall for the 1 in 1 and 1 in 100 annual exceedance probability (AEP) rainfall events. The calculated rainfall intensities for these events are 27.0 and 84.9 mm/hr respectively.

The flow rate as given by the Modified Rational Method is:

Q=2.78 x C_v x C_r x rainfall intensity x impermeable area

where:

 C_v is the volumetric runoff coefficient = $P_r/PIMP$ = 0.7618 where P_r is Percentage Runoff and PIMP is Percentage Impermeable Area C_r is the routing coefficient = 1.3 Impermeable Area = 0.207 ha

The peak discharges of surface runoff from impermeable areas of the existing site are shown in the table below:

AEP of rainfall event	Peak discharge for 0.207 ha impermeable area (I/s)
1 in 1	15.4
1 in 2	19.9
1 in 30	37.6
1 in 100	48.4

¹⁷ The Wallingford Procedure, Volume 4, 1981

APPENDIX K

Surface Water Attenuation - Storage Volume Calculation

Weetwood		Page 1
Suite 1 Park House	5560	
Broncoed Bus Park	Aber Road, Flint	1
Wrexham Rd Mold	Surface Water Calculations	Micco
Date 21/06/2022 10:21	Designed by TB	Desinado
File 2022-06-17 5560 SW R1.MDX	Checked by	Drainage
Micro Drainage	Network 2020.1	
Desig	<u>N by the Modified Rational Method</u> n Criteria for Storm TANDARD Manhole Sizes STANDARD	
FSR Rainfa Return Period (years	ll Model - England and Wales	(%) 100
Ratio Maximum Rainfall (mm/hr Maximum Time of Concentration (mins	R0.352Minimum Backdrop Height5050Maximum Backdrop Height30Min Design Depth for Optimisation.)0.000Min Vel for Auto Design only ((m) 0.000 (m) 0.000 (m) 0.000 m/s) 1.00
Desig	ned with Level Soffits	
<u>Time A</u>	rea Diagram for Storm	
	e Area Time Area s) (ha) (mins) (ha)	
	-4 0.366 4-8 0.166	
Total Are	a Contributing (ha) = 0.532	
Total I	Pipe Volume (m³) = 12.514	
<u>Network</u>	Design Table for Storm	
	T.E. Base k HYD DIA Section T mins) Flow (l/s) (mm) SECT (mm)	'ype Auto Design
S1.000 60.000 0.250 240.0 0.159 S1.001 17.707 0.100 177.1 0.034	5.00 0.0 0.600 o 300 Pipe/Cond 0.00 0.0 0.600 o 300 Pipe/Cond	
\$2.000 33.423 0.150 222.8 0.035	5.00 0.0 0.600 o 300 Pipe/Cond	luit 🖰
Net	work Results Table	
PN Rain T.C. US/ILΣI (mm/hr) (mins) (m) (.Area Σ Base Foul Add Flow Vel Cap ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s	
	0.1590.00.00.01.0171.0.1930.00.00.01.1883.	
s2.000 50.00 5.53 5.300	0.035 0.0 0.0 0.0 1.05 74.	2 4.7
©1	982-2020 Innovyze	

Weetwood		Page 2
Suite 1 Park House	5560	
Broncoed Bus Park	Aber Road, Flint	Sec. 1
Wrexham Rd Mold	Surface Water Calculations	Mirco
Date 21/06/2022 10:21	Designed by TB	Desinance
File 2022-06-17 5560 SW R1.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1	1

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
s3.000	40.000	0.200	200.0	0.081	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
S2.001	5.548	0.050	111.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
S4.000	8.201	0.200	41.0	0.194	5.00	0.0	0.600	0	300	Pipe/Conduit	ð
S1.002 S1.003 S1.004		0.050 0.050 0.050	60.0 127.5 55.6	0.016 0.000 0.013	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	6 6 6

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (l/s)	Flow (1/s)
S3.000	50.00	5.60	5.350	0.081	0.0	0.0	0.0	1.11	78.3	11.0
S2.001	50.00	5.66	5.150	0.116	0.0	0.0	0.0	1.49	105.5	15.7
S4.000	50.00	5.06	5.300	0.194	0.0	0.0	0.0	2.46	174.1	26.3
S1.002 S1.003 S1.004	50.00 50.00 50.00	6.34	5.100 4.950 4.900	0.519 0.519 0.532	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.39	143.7 98.3 149.4	70.3 70.3 72.0

Weetwood		Page 3
Suite 1 Park House	5560	
Broncoed Bus Park	Aber Road, Flint	Contra-
Wrexham Rd Mold	Surface Water Calculations	Micro
Date 21/06/2022 10:21	Designed by TB	Drainage
File 2022-06-17 5560 SW R1.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1	

Manhole S	Schedules	for	Storm
-----------	-----------	-----	-------

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S8	6.950	1.500	Open Manhole	1200	S1.000	5.450	300				
S7-TANK	6.700	1.500	Open Manhole	1500	S1.001	5.200	300	S1.000	5.200	300	
S6	6.550	1.250	Open Manhole	1200	S2.000	5.300	300				
S5	6.600	1.250	Open Manhole	1200	S3.000	5.350	300				
S4	6.600	1.450	Open Manhole	1200	S2.001	5.150	300	s2.000	5.150	300	
								s3.000	5.150	300	
S3A	6.600	1.300	Open Manhole	1200	S4.000	5.300	300				
S3	6.600	1.500	Open Manhole	1200	S1.002	5.100	300	S1.001	5.100	300	
								S2.001	5.100	300	
								S4.000	5.100	300	
S2-BS	6.600	1.650	Open Manhole	600	S1.003	4.950	300	s1.002	5.050	300	100
S1-FC			Open Manhole	1500	s1.004	4.900	300	s1.003	4.900	300	
S-OUTFALL			Open Manhole	0		OUTFALL		s1.004	4.850	300	

-	MH ame		Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
	S8	1026.364	1980.832	1026.364	1980.832	Required	6
S7	-TANK	1064.120	2027.463	1064.120	2027.463	Required	
	S6	1050.153	2058.853	1050.153	2058.853	Required	(x
	S5	1068.108	2077.009	1068.108	2077.009	Required	•
	S4	1076.128	2037.822	1076.128	2037.822	Required	A.
	S3A	1085.349	2027.903	1085.349	2027.903	Required	
			@1.0	02 2020 так			
			©19	82-2020 Inno	ovyze		

Weetwood							Page 4
Suite 1 Pa	rk Hou	use		5560			
Broncoed Bus	Park			Aber Road,	Flint		1
Wrexham Rd	Mold			Surface Wa	ter Calcula	tions	Micro
Date 21/06/2	022 10	0:21		Designed b	у ТВ		Desinant
File 2022-06	-17 5	560 SW R	1.MDX	Checked by			Drainago
Micro Draina	ge			Network 20	20.1		I.
			Manhole	Schedules	for Storm		
I	MH Name		Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
	S3	1080.440	2034.330	1080.440	2034.330	Required	<u>>-</u>
	S2-BS	1083.380	2034.932	1083.380	2034.932	Required	
	S1-FC	1089.624	2036.210	1089.624	2036.210	Required	
S-0	UTFALL	1092.347	2036.767			No Entry	•
			©19	82-2020 Inno	ovyze		

Weetwood		Page 5
Suite 1 Park House	5560	
Broncoed Bus Park	Aber Road, Flint	Sec. 1
Wrexham Rd Mold	Surface Water Calculations	Micro
Date 21/06/2022 10:21	Designed by TB	Drainage
File 2022-06-17 5560 SW R1.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000 S1.001	0 0	<mark>300</mark> 300	S8 S7-TANK	6.950 6.700	5.450 5.200		Open Manhole Open Manhole	1200 1500
S2.000	0	300	S6	6.550	5.300	0.950	Open Manhole	1200
S3.000	0	300	S5	6.600	5.350	0.950	Open Manhole	1200
S2.001	0	300	S4	6.600	5.150	1.150	Open Manhole	1200
S4.000	0	300	S3A	6.600	5.300	1.000	Open Manhole	1200
S1.002 S1.003 S1.004	0 0 0	300 300 300	S3 S2-BS S1-FC	6.600 6.600 6.600	5.100 4.950 4.900	1.350	Open Manhole Open Manhole Open Manhole	1200 600 1500

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	60.000 17.707		S7-TANK S3		5.200 5.100		Open Manhole Open Manhole	1500 1200
S2.000	33.423	222.8	S4	6.600	5.150	1.150	Open Manhole	1200
S3.000	40.000	200.0	S4	6.600	5.150	1.150	Open Manhole	1200
S2.001	5.548	111.0	S3	6.600	5.100	1.200	Open Manhole	1200
S4.000	8.201	41.0	S3	6.600	5.100	1.200	Open Manhole	1200
S1.002 S1.003 S1.004	3.000 6.374 2.780		S2-BS S1-FC S-OUTFALL		5.050 4.900 4.850	1.400	Open Manhole Open Manhole Open Manhole	600 1500 0

Weetwood							Page 6					
Suite 1 – B	Park Ho	use			5560							
Broncoed Bi	ıs Park				Aber R		1					
Wrexham Rd	Mold				Surfac		Micro					
Date 21/06/	/2022 1	0:21			Design							
File 2022-0)6-17 5	560 SI	W R1.M	DX	Checke		Drain	IdUl				
Micro Drain	lage				Networ		0.1					
				Area S	Summary	y for	Storm					
		Pipe Number	PIMP P		MP Gro	oss (ha) i	Imp. Area (h	-	e Total (ha)			
		number	Type N	ame (a	, nrea	(114) 1	nieu (in	u)	(iia)			
		1.000	-			0.159	0.1		0.159			
		1.001	_			0.034 0.035	0.03		0.034 0.035			
		2.000				0.035	0.0		0.035			
		2.001				0.000	0.00		0.001			
		4.000			100 0.000 0.000 0.000 100 0.194 0.194 0.194							
		1.002				0.016	0.03		0.016			
		1.003				0.000	0.0		0.000			
		1.004	-	- 1		0.013	0.03		0.013 Total			
						Total 0.532	Tota 0.53		Total 0.532			
					_		_					
		utfall e Numbe		fall (me	C. Leve] (m)	L I. Le (m		Min Level (m)	,	W nm)		
		e Numbe		me	(m)	(m		Level				
		e Numbe	er Na	TFALL	(m)	(m) I. .850	Level (m) 0.000	(mm) (n	um)		
Time Depth	Pip	e Numbe	D4 S-OU Dat	TFALL	(m) 6.600	(m) I. .850 (mins)	Level (m) 0.000	(mm) (n 0	um)	Time	Dept
-	Pip	e Numbe	D4 S-OU Dat	TFALL	(m) 6.600 0.000	(m) 4. Offset) I. .850 (mins)	Level (m) 0.000	(mm) (n 0	u m)	Time (mins)	Dept (m)
-	Pip Time (mins)	e Number S1.00 Depth	DA S-OU Dat Time (mins)	me FFALL :um (m) Depth	(m) 6.600 0.000 Time (mins)	(m) 4. Offset Depth) I. .850 (mins) Time (mins)	Level (m) 0.000 0 Depth	(mm) (m 0 Time (mins)	m) O Depth	(mins)	
(mins) (m) 1 6.210 2 6.210	Pip Time (mins) 19 20	<pre>e Numbe S1.00 Depth (m) 6.210 6.210</pre>	Per Na 04 S-OU ⁴ Dat Time (mins) 37 38	me TFALL .um (m) Depth (m) 6.210 6.210	(m) 6.600 0.000 Time (mins) 55 56	(m 0 4. 0ffset Depth (m) 6.210 6.210) I. .850 (mins) Time (mins) 73 74	Level (m) 0.000 0 Depth (m) 6.210 6.210	(mm) (m 0 Time (mins) 91 92	m) 0 Depth (m) 6.210 6.210	(mins) 109 110	(m) 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210	Pip Time (mins) 19 20 21	<pre>e Number S1.00 Depth (m) 6.210 6.210 6.210</pre>	Per Na 04 S-OU Dat Time (mins) 37 38 39	me TFALL .um (m) Depth (m) 6.210 6.210 6.210	(m) 6.600 0.000 Time (mins) 55 56 57	(m 0 4. 0ffset Depth (m) 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93	m) 0 Depth (m) 6.210 6.210 6.210	(mins) 109 110 111	(m) 6.21 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210	Pip Time (mins) 19 20 21 22	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210</pre>	Per Na D4 S-OU Dat Time (mins) 37 38 39 40	me FFALL tum (m) Depth (m) 6.210 6.210 6.210 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58	(m 0 4. 0ffset Depth (m) 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112	(m) 6.21 6.21 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210	Pip Time (mins) 19 20 21 22 23	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU Dat Time (mins) 37 38 39 40 41	me FFALL tum (m) Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58 59	(m 0 4. 0ffset Depth (m) 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113	(m) 6.21 6.21 6.21 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210	Pip Time (mins) 19 20 21 22 23 24	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 </pre>	Per Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42	me FFALL tum (m) Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (n 0 Time (mins) 91 92 93 94 95 96	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114	(m) 6.21 6.21 6.21 6.21 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210	Pip Time (mins) 19 20 21 22 23 24 25	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43	me FFALL tum (m) Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61	(m 0 4. 0ffset Depth (m) 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210	(mm) (n 0 Time (mins) 91 92 93 94 95 96 97	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115	 (m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27	<pre>e Number S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45	me FFALL tum (m) Depth (m) 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117	(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28	<pre>e Number S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46	me FFALL tum (m) Depth (m) 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (n 0 Time (mins) 91 92 93 94 95 96 97 98 99 100	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118	(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21
Amins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210 11 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28 29	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46 47	me FFALL tum (m) Depth (m) 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64 65	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82 83	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99 100 101	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118 119	<pre>(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21</pre>
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210 11 6.210 12 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28 29 30	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46 47 48	me FFALL tum (m) Depth (m) 6.210	(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64 65 66	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82 83 84	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99 100 101 102	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118 119 120	<pre>(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21</pre>
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210 11 6.210 12 6.210 13 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28 29 30 31	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46 47 48 49	me FFALL tum (m) Depth (m) 6.210	<pre>(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64 65 66 67</pre>	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82 83 84 85	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99 100 101 102 103	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118 119 120 121	(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210 11 6.210 12 6.210 13 6.210 14 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28 29 30 31 32	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46 47 48 49 50	me FFALL tum (m) Depth (m) 6.210	<pre>(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64 65 66 67 68</pre>	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82 83 84 85 86	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99 100 101 102 103 104	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118 119 120 121 122	<pre>(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21</pre>
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210 11 6.210 12 6.210 13 6.210 14 6.210 15 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	me FFALL tum (m) Depth (m) 6.210	<pre>(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69</pre>	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	Level (m) 0.000 0 Depth (m) 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	<pre>(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21</pre>
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210 11 6.210 12 6.210 13 6.210 14 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	<pre>e Numbe S1.00 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210</pre>	Par Na D4 S-OU ⁷ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	me FFALL tum (m) Depth (m) 6.210	<pre>(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70</pre>	(m Offset Depth (m) 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	Level (m) 0.000 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	<pre>(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21</pre>
(mins) (m) 1 6.210 2 6.210 3 6.210 4 6.210 5 6.210 6 6.210 7 6.210 8 6.210 9 6.210 10 6.210 11 6.210 12 6.210 13 6.210 14 6.210 15 6.210	Pip Time (mins) 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	e Number S1.00 Depth (m) 6.210	Par Na D4 S-OU ⁴ Dat Time (mins) 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	me FFALL tum (m) Depth (m) 6.210	<pre>(m) 6.600 0.000 Time (mins) 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71</pre>	(m Offset Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210) I. .850 (mins) Time (mins) 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89	Level (m) 0.000 0 Depth (m) 6.210	<pre>(mm) (m 0 Time (mins) 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107</pre>	m) 0 Depth (m) 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210 6.210	(mins) 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	(m) 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21

Weetwo	ood												Page 7		
Suite	1 P	ark Ho	use			5560									
Bronco	oed Bu	s Park				Aber F	load,	Flint				4			
Wrexha	am Rd	Mold				Surfac		Micco							
		2022 1	0:21			Design		Micro							
		6-17 5		M D1 M	DΥ	Checke	Drain	age							
			500 5	W KI.M	DA										
Micro	Drain	age				Network 2020.1									
			<u>S</u>	urchar	ged O	itfall Details for Storm									
Time	Depth	Time	-		-		Depth		Depth		-	Time	-		
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		
			6.210										6.210		
	6.210 6.210		6.210		6.210 6.210		6.210 6.210		6.210 6.210	1	6.210 6.210		6.210		
	6.210				6.210								6.210		
	6.210		6.210 6.210		6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210		
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210		6.210		6.210		
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210		
		I		I T		I		1		1		I			
					©198	32-2020	Inno	vyze							

Weetwo	ood							Page 8						
Suite	1 P	ark Ho	use			5560								
Bronco	oed Bu	s Park				Aber F		4						
Wrexha	am Rd	Mold				Surfac		Micco						
		2022 1	0:21			Design	Micro							
		6-17 5		M D1 M	DΥ	Checke	Drain	age						
			500 5	W KI.M	DA									
Micro	Drain	age				Network 2020.1								
			<u>S</u>	urchar	ged O	utfall	Detai							
Time	Depth	Time	Depth		-		Depth		-	Time	-	Time	-	
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210 6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
462	6.210	506	6.210	550	6.210	594	6.210	638	6.210	682	6.210	726	6.210	
	6.210		6.210	551	6.210		6.210	639	6.210		6.210		6.210	
464	6.210		6.210		6.210	596	6.210		6.210		6.210	728	6.210	
	6.210	509	6.210		6.210	597	6.210	641	6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
478 6.210 522 6.210 566 6.210 610 6.210								654	6.210	698	6.210	/42	6.210	
I														
					©198	82-2020	Inno	vyze						

Suite 1 Park House 5560 Broncoed Bus Park Aber Road, Flint Wrexham Rd Mold Surface Water Calculations Date 21/06/2022 10:21 Designed by TB File 2022-06-17 5560 SW R1.MDX Checked by Micro Drainage Network 2020.1 Surcharged Outfall Details for Storm Time Depth (mins) (m) (mi												
Wrexham Rd Mold Surface Water Calculations Date 21/06/2022 10:21 Designed by TB Checked by File 2022-06-17 5560 SW R1.MDX Designed by TB Checked by Micro Drainage Network 2020.1 Surcharged Outfall Details for Storm Time Depth (mins) (m) Time Depth (mins)	Dept											
Date 21/06/2022 10:21 Designed by TB Checked by Designed by TB File 2022-06-17 5560 SW R1.MDX Network 2020.1 Micro Drainage Network 2020.1 Surcharged Outfall Details for Storm Surcharged Outfall Details for Storm Time Depth (mins) (m) (mins) (m) (mins) (m) (mins) (m) (mins) (m) Time Depth (mins) (m) (mins) (m) (mins) (m) 744 6.210 788 6.210 833 6.210 876 6.210 926 6.210 966 6.210 1000 966 6.210 744 6.210 792 6.210 835 6.210 879 6.210 926 6.210 966 6.210 1011 966 966 9.210 746 6.210 793 6.	Dept											
Date 21/06/2022 10:21 Designed by TB File 2022-06-17 5560 SW R1.MDX Decked by Micro Drainage Network 2020.1 Surcharged Outfall Details for Storm Time Depth (mins) (m) (m) (mins) (m) (mins) (m) (mins) (m) (mins) (m) (mins) (m) (m) (m) (m) (m) (mins) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	Dept											
File 2022-06-17 5560 SW R1.MDX Checked by Utwork 2020.1 Micro Drainage Network 2020.1 Surcharged Outfall Details for Storm Time (mins) (m) (m) (mins) (m) (m) (mins) (m) (mins) (m) (mins) (m) (mins) (m) (mins) (m) (mins) (m) (m) (mins) (m) (m) (mins) (m) (m) (mins) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	Dept											
Micro Drainage Network 2020.1 Surcharged Outfall Details for Storm Time Depth (mins) (m) Time (mins) (m) Depth (mins) (m)	-											
Time Depth Time Depth <t< td=""><td>-</td></t<>	-											
Time (mins) Depth (mins) Time (m) Depth (mins) Time (m) Depth (mins) Time (m) Depth (mins) Time (m) Depth (mins) Time (mins) Depth (mins) Time (mins) <tht< th=""><th>-</th></tht<>	-											
(mins)(m)(m)(mins)(m)(mins)(m)(mins)(m)(mins)(m)(mins)(m) <th< th=""><th>-</th></th<>	-											
7436.2107876.2108316.2108756.2109196.2109636.21010077446.2107886.2108326.2108766.2109206.2109646.21010087456.2107896.2108336.2108776.2109216.2109666.21010097466.2107906.2108346.2108786.2109226.2109666.21010107476.2107916.2108356.2108796.2109236.2109666.21010117486.2107926.2108356.2108796.2109246.2109666.21010117486.2107936.2108366.2108806.2109256.2109666.21010117496.2107936.2108376.2108816.2109256.2109696.21010117506.2107946.2108386.2108826.2109266.2109716.21010147516.2107966.2108406.2108846.2109286.2109716.21010177546.2107996.2108416.2108866.2109306.2109766.21010177566.2107996.2108436.210 <th>(m)</th>	(m)											
7446.2107886.2108326.2108766.2109206.2109646.21010087456.2107896.2108336.2108776.2109216.2109656.21010097466.2107906.2108346.2108786.2109226.2109666.21010107476.2107916.2108356.2108796.2109236.2109666.21010117486.2107926.2108366.2108806.2109246.2109666.21010117496.2107936.2108376.2108816.2109256.2109696.21010137506.2107946.2108386.2108826.2109276.2109706.21010147516.2107966.2108396.2108836.2109276.2109716.21010157526.2107966.2108406.2108846.2109286.2109736.21010177546.2107986.2108446.2108866.2109306.2109756.21010187556.2107996.2108436.2108886.2109336.2109766.21010217566.2108006.2108466.210 <td></td>												
7446.2107886.2108326.2108766.2109206.2109646.21010087456.2107896.2108336.2108776.2109216.2109656.21010097466.2107906.2108346.2108786.2109226.2109666.21010107476.2107916.2108356.2108796.2109236.2109666.21010117486.2107926.2108366.2108806.2109246.2109666.21010117496.2107936.2108376.2108816.2109256.2109696.21010137506.2107956.2108396.2108836.2109276.2109706.21010147516.2107966.2108406.2108836.2109276.2109716.21010157526.2107966.2108406.2108856.2109296.2109736.21010177546.2107996.2108446.2108866.2109306.2109746.21010187556.2107996.2108436.2108866.2109336.2109766.21010217566.2108006.2108466.210 <td>6.21</td>	6.21											
7456.2107896.2108336.2108776.2109216.2109656.21010097466.2107906.2108346.2108786.2109226.2109666.21010107476.2107916.2108356.2108796.2109236.2109666.21010117486.2107926.2108366.2108806.2109246.2109686.21010117496.2107936.2108376.2108816.2109256.2109696.21010117506.2107946.2108386.2108826.2109266.2109706.21010147516.2107956.2108396.2108836.2109276.2109716.21010157526.2107966.2108406.2108846.2109286.2109726.21010167536.2107966.2108416.2108856.2109306.2109746.21010177546.2107996.2108436.2108876.2109336.2109766.21010217566.2108016.2108446.2108886.2109336.2109766.21010217586.2108016.2108466.210 <td></td>												
7466.2107906.2108346.2108786.2109226.2109666.21010107476.2107916.2108356.2108796.2109236.2109676.21010117486.2107926.2108366.2108806.2109246.2109686.21010127496.2107936.2108376.2108816.2109256.2109696.21010137506.2107946.2108386.2108826.2109266.2109706.21010147516.2107956.2108396.2108836.2109276.2109716.21010157526.2107966.2108406.2108846.2109296.2109736.21010167536.2107976.2108416.2108856.2109296.2109736.21010177546.2107996.2108436.2108866.2109306.2109756.21010187556.2107996.2108446.2108886.2109336.2109766.21010207576.2108006.2108466.2108906.2109346.2109786.21010217586.2108036.2108916.210 <td></td>												
7486.2107926.2108366.2108806.2109246.2109686.21010127496.2107936.2108376.2108816.2109256.2109696.21010137506.2107946.2108386.2108826.2109266.2109706.21010147516.2107956.2108396.2108836.2109276.2109716.21010157526.2107966.2108406.2108846.2109286.2109716.21010167536.2107976.2108416.2108856.2109296.2109736.21010177546.2107986.2108426.2108866.2109306.2109746.21010187556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109336.2109776.21010217586.2108026.2108466.2108906.2109356.2109796.21010227596.2108046.2108486.2108926.2109366.2109796.21010237606.2108046.2108926.210 <td>6.21</td>	6.21											
7496.2107936.2108376.2108816.2109256.2109696.21010137506.2107946.2108386.2108826.2109266.2109706.21010147516.2107956.2108396.2108836.2109276.2109716.21010157526.2107966.2108406.2108846.2109286.2109726.21010167536.2107976.2108416.2108856.2109296.2109736.21010177546.2107986.2108426.2108866.2109306.2109746.21010187556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109336.2109766.21010217586.2108026.2108466.2108906.2109356.2109796.21010227596.2108046.2108486.2108926.2109366.2109366.21010247606.2108046.2108486.2108936.2109366.2109366.21010247616.2108056.2108936.210 <td></td>												
7506.2107946.2108386.2108826.2109266.2109706.21010147516.2107956.2108396.2108836.2109276.2109716.21010157526.2107966.2108406.2108846.2109286.2109726.21010167536.2107976.2108416.2108856.2109296.2109736.21010177546.2107986.2108426.2108866.2109306.2109746.21010187556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109326.2109766.21010217576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109356.2109796.21010237606.2108046.2108486.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010247626.2108066.2108496.210 <td></td>												
7516.2107956.2108396.2108836.2109276.2109716.21010157526.2107966.2108406.2108846.2109286.2109726.21010167536.2107976.2108416.2108856.2109296.2109736.21010177546.2107986.2108426.2108866.2109306.2109746.21010187556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109326.2109766.21010207576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109346.2109796.21010227596.2108036.2108486.2108926.2109366.2109796.21010237606.2108046.2108496.2108936.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010247626.2108066.2108936.210 <td>6.21</td>	6.21											
7526.2107966.2108406.2108846.2109286.2109726.21010167536.2107976.2108416.2108856.2109296.2109736.21010177546.2107986.2108426.2108866.2109306.2109746.21010187556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109326.2109766.21010207576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109346.2109796.21010227596.2108036.2108486.2108916.2109356.21010237606.2108046.2108486.2108926.2109366.2109806.2107616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108936.2109366.2109816.21010257626.2108066.2108506.2108946.210938 <td>6.21</td>	6.21											
7536.2107976.2108416.2108856.2109296.2109736.21010177546.2107986.2108426.2108866.2109306.2109746.21010187556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109326.2109766.21010207576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109346.2109786.21010227596.2108036.2108486.2108916.2109356.2109796.21010237606.2108046.2108496.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.21010247626.2108066.2108506.2108936.2109376.21010257626.2108066.2108506.2108946.2109386.2109826.21010257626.2108066.2108506.2108946.2109386.210 <td>6.21</td>	6.21											
7546.2107986.2108426.2108866.2109306.2109746.21010187556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109326.2109766.21010207576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109346.2109786.21010227596.2108036.2108476.2108916.2109356.2109796.21010237606.2108046.2108496.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.2101026	6.21											
7556.2107996.2108436.2108876.2109316.2109756.21010197566.2108006.2108446.2108886.2109326.2109766.21010207576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109346.2109786.21010227596.2108036.2108476.2108916.2109356.2109796.21010237606.2108046.2108486.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.21010257626.2108066.2108506.2108946.2109386.2109826.2101026	6.21											
7566.2108006.2108446.2108886.2109326.2109766.21010207576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109346.2109786.21010227596.2108036.2108476.2108916.2109356.2109796.21010237606.2108046.2108486.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.2101026	6.21											
7576.2108016.2108456.2108896.2109336.2109776.21010217586.2108026.2108466.2108906.2109346.2109786.21010227596.2108036.2108476.2108916.2109356.2109796.21010237606.2108046.2108486.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.2101026	6.21											
7586.2108026.2108466.2108906.2109346.2109786.2107596.2108036.2108476.2108916.2109356.2109796.21010237606.2108046.2108486.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.2101026	6.21											
7596.2108036.2108476.2108916.2109356.2109796.21010237606.2108046.2108486.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.2101026	6.21											
7606.2108046.2108486.2108926.2109366.2109806.21010247616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.2101026	6.21											
7616.2108056.2108496.2108936.2109376.2109816.21010257626.2108066.2108506.2108946.2109386.2109826.2101025	6.21											
762 6.210 806 6.210 850 6.210 894 6.210 938 6.210 982 6.210 1026	6.21											
	6.21											
763 6.210 807 6.210 851 6.210 895 6.210 939 6.210 983 6.210 1027	6.21											
	6.21											
764 6.210 852 6.210 896 6.210 940 6.210 984 6.210 1028	6.21											
765 6.210 853 6.210 897 6.210 941 6.210 985 6.210 1029												
766 6.210 854 6.210 898 6.210 942 6.210 986 6.210 1030	6.21											
767 6.210 811 6.210 855 6.210 899 6.210 943 6.210 987 6.210 1031												
768 6.210 812 6.210 856 6.210 900 6.210 944 6.210 988 6.210 1032	6.21											
769 6.210 813 6.210 857 6.210 901 6.210 945 6.210 989 6.210 1033												
770 6.210 814 6.210 858 6.210 902 6.210 946 6.210 990 6.210 1034												
771 6.210 815 6.210 859 6.210 903 6.210 947 6.210 991 6.210 1035												
772 6.210 816 6.210 860 6.210 904 6.210 948 6.210 992 6.210 1036												
773 6.210 817 6.210 861 6.210 905 6.210 949 6.210 993 6.210 1037												
774 6.210 818 6.210 862 6.210 906 6.210 950 6.210 994 6.210 1038												
775 6.210 819 6.210 863 6.210 907 6.210 951 6.210 995 6.210 1039												
776 6.210 820 6.210 864 6.210 908 6.210 952 6.210 996 6.210 1040												
777 6.210 821 6.210 865 6.210 909 6.210 953 6.210 997 6.210 1041												
778 6.210 822 6.210 866 6.210 910 6.210 954 6.210 998 6.210 1042												
779 6.210 823 6.210 867 6.210 911 6.210 955 6.210 999 6.210 1043												
780 6.210 824 6.210 868 6.210 912 6.210 956 6.210 1000 6.210 1044												
781 6.210 825 6.210 869 6.210 913 6.210 957 6.210 1001 6.210 1045												
782 6.210 826 6.210 870 6.210 914 6.210 958 6.210 1002 6.210 1046												
783 6.210 827 6.210 871 6.210 915 6.210 959 6.210 1003 6.210 1047												
784 6.210 828 6.210 872 6.210 916 6.210 960 6.210 1004 6.210 1048												
785 6.210 829 6.210 873 6.210 917 6.210 961 6.210 1005 6.210 1049												
786 6.210 830 6.210 874 6.210 918 6.210 962 6.210 1006 6.210 1050	6.21											
	786 6.210 830 6.210 874 6.210 918 6.210 962 6.210 1006 6.210 1050 6.21											
©1982-2020 Innovyze												

Weetwo	ood							Page 10						
Suite	1 P	Park Ho	use			5560								
Bronco	oed Bu	ıs Park				Aber F	Road,	Flint				4		
Wrexha		Mold	-			Surfac			- Jac					
			0 0 1					Micro]					
		2022 1				Design		Drain						
File 2	2022-0	6-17 5	560 S	W R1.M	DX	Checke		bruit	lage					
Micro	Drain	lage				Networ	k 202	0.1			•			
			<u>S</u>	urchar	qed O	utfall	Detai	ls for	: Stor	<u>m</u>				
Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth	
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	
1051	6.210	1005	6.210	1120	6.210	1102	6.210	1007	6.210	1071	6.210	1215	6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.210	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
1059	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
1060	6.210		6.210	1148	6.210	1192	6.210	1236	6.210	1280	6.210	1324	6.21	
1061	6.210	1105	6.210	1149	6.210	1193	6.210	1237	6.210	1281	6.210	1325	6.21	
1062	6.210	1106	6.210	1150	6.210	1194	6.210	1238	6.210	1282	6.210	1326	6.21	
1063	6.210	1107	6.210	1151	6.210	1195	6.210	1239	6.210	1283	6.210	1327	6.21	
1064	6.210	1108	6.210	1152	6.210	1196	6.210	1240	6.210	1284	6.210	1328	6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210 6.210		6.210		6.210		6.210		6.210		6.210 6.210		6.21	
	6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210 6.210		6.210		6.21 6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210			
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
1082	6.210		6.210		6.210		6.210	1258	6.210	1302	6.210	1346	6.21	
1083	6.210		6.210	1171	6.210	1215	6.210		6.210	1303	6.210	1347	6.21	
1084	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
1085	6.210	1129	6.210	1173	6.210		6.210	1261	6.210	1305	6.210	1349	6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
	6.210		6.210		6.210		6.210		6.210	1	6.210		6.21	
	6.210		6.210		6.210		6.210		6.210		6.210		6.21	
1090	6.210	1134	6.210	1178	6.210	1222	6.210	1266	6.210	1310	6.210	1354	6.21	

1088	6.210	1132	6.210	1176	6.210	1220	6.210	1264	6.210	1308	6.210	1352	6.2
1089	6.210	1133	6.210	1177	6.210	1221	6.210	1265	6.210	1309	6.210	1353	6.2
1090	6.210	1134	6.210	1178	6.210	1222	6.210	1266	6.210	1310	6.210	1354	6.2
1091	6.210	1135	6.210	1179	6.210	1223	6.210	1267	6.210	1311	6.210	1355	6.2
1092	6.210	1136	6.210	1180	6.210	1224	6.210	1268	6.210	1312	6.210	1356	6.2
1093	6.210	1137	6.210	1181	6.210	1225	6.210	1269	6.210	1313	6.210	1357	6.2
1094	6.210	1138	6.210	1182	6.210	1226	6.210	1270	6.210	1314	6.210	1358	6.2
©1982-2020 Innovyze													

Weetwood		Page 11
Suite 1 Park House	5560	
Broncoed Bus Park	Aber Road, Flint	and the second second
Wrexham Rd Mold	Surface Water Calculations	Micro
Date 21/06/2022 10:21	Designed by TB	Desinado
File 2022-06-17 5560 SW R1.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1	,

Surcharged Outfall Details for Storm

Time	Depth													
(mins)	(m)													
1359	6.210	1371	6.210	1383	6.210	1395	6.210	1407	6.210	1419	6.210	1431	6.210	
1360	6.210	1372	6.210	1384	6.210	1396	6.210	1408	6.210	1420	6.210	1432	6.210	
1361	6.210	1373	6.210	1385	6.210	1397	6.210	1409	6.210	1421	6.210	1433	6.210	
1362	6.210	1374	6.210	1386	6.210	1398	6.210	1410	6.210	1422	6.210	1434	6.210	
1363	6.210	1375	6.210	1387	6.210	1399	6.210	1411	6.210	1423	6.210	1435	6.210	
1364	6.210	1376	6.210	1388	6.210	1400	6.210	1412	6.210	1424	6.210	1436	6.210	
1365	6.210	1377	6.210	1389	6.210	1401	6.210	1413	6.210	1425	6.210	1437	6.210	
1366	6.210	1378	6.210	1390	6.210	1402	6.210	1414	6.210	1426	6.210	1438	6.210	
1367	6.210	1379	6.210	1391	6.210	1403	6.210	1415	6.210	1427	6.210	1439	6.210	
1368	6.210	1380	6.210	1392	6.210	1404	6.210	1416	6.210	1428	6.210	1440	6.210	
1369	6.210	1381	6.210	1393	6.210	1405	6.210	1417	6.210	1429	6.210			
1370	6.210	1382	6.210	1394	6.210	1406	6.210	1418	6.210	1430	6.210			
				1		1		1						

<u>Simulation Criteria for Storm</u>

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 4 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type S	Summer
Return Period (years)	2	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	18.000	Storm Duration (mins)	30
Ratio R	0.352		

Suite 1 P							110	ge 12
Suite i P	ark House		5560					
Broncoed Bu	s Park		Aber R	Road, Flir	nt			
Wrexham Rd	Mold		Surfac	ce Water (Calculatio	ons	M	icco
Date 21/06/	2022 10:21		Design	ned by TB				illu
File 2022-0	6-17 5560	SW R1.MDX	Checke	ed by			U	dllldL
Micro Drain	age		Networ	ck 2020.1				
			<u>.ne Contro</u>					
<u>Hydro-</u>	<u>Brake® Opt</u>	imum Manh	ole: S1-F0	C, DS/PN:	S1.004,	Volume (r	n³):	3.4
		Ŭ	Jnit Referer	nce MD-SHE-	-0075-3000-	1500-3000		
			esign Head			1.500		
		Desi	lgn Flow (l/ Flush-Fl		0	3.0		
				ive Minimi		alculated m storage		
			Applicati			Surface		
		5	Sump Availab			Yes		
		The	Diameter (n vert Level	,		75 4,900		
	Minimum C	utlet Pipe		()		4.900		
		-	Diameter (r			1200		
	Suggest	eu Maimore	(iluiti)				
Control	Suggest Points		Flow (l/s)		col Points	Head	(m) 1	Flow (1/
Control Design Point	Points	Head (m)	Flow (1/s) 3.0		Kick-	-Flo® 0	(m) 1 .671 -	Flow (1/ 2 2
Design Point The hydrolc Hydro-Brake	Points (Calculated) Flush-Flo™ ogical calcul © Optimum as optimum© be	Head (m) 1 1.500 0.329 ations have specified.	Flow (l/s) 3.0 2.6 e been based Should ar	Contr Mean Flow d on the He nother type	Kick- over Head F ad/Discharc of control	-Flo® 0 Range ge relation l device or	.671 - nship ther t	2 2 for the
Design Point The hydrolc Hydro-Brake Hydro-Brake invalidated	Points (Calculated) Flush-Flo™ ogical calcul © Optimum as optimum© be	Head (m) 1 1.500 0.329 ations have specified. utilised t	Flow (l/s) 3.0 2.6 e been based Should ar	Contr Mean Flow d on the He nother type storage rou	Kick- over Head F ad/Dischard of contro. ting calcu	-Flo® 0 Range ge relation l device o lations wi	.671 - nship ther t ll be	2 2 for the chan a
Design Point The hydrolc Hydro-Brake Hydro-Brake invalidated	Points (Calculated) Flush-Flo™ ogical calcul ® Optimum as Optimum® be Flow (1/s)	Head (m) 1 1.500 0.329 ations have specified. utilised t	Flow (l/s) 3.0 2.6 e been based Should ar	Contr Mean Flow d on the He nother type storage rou	Kick- over Head F ad/Dischard of contro. ting calcu	-Flo® 0 Range ge relation l device o lations wi Depth (m)	.671 - ther t ll be Flow	2 2 for the chan a
Design Point The hydrolo Hydro-Brake Hydro-Brake invalidated Depth (m) 0.100 0.200	Points (Calculated) Flush-Flo ^m ogical calcul @ Optimum as Optimum® be Flow (1/s) 2.1 2.5	Head (m) 1 1.500 1.500 1.500 1.200 1.200 1.400	Flow (1/s) 3.0 2.6 e been based Should ar then these s Flow (1/s) 2.7 2.9	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500	Kick- over Head F ad/Dischard of control ting calcu Flow (1/s) 4.1 4.4	-Flo® 0 Range ge relation l device o lations wi Depth (m) 7.000 7.500	.671 - ther t 11 be Flow	2 22 for the than a (1/s) 6.1 6.3
Design Point The hydrolo Hydro-Brake Hydro-Brake invalidated Depth (m) 0.100 0.200 0.300	Points (Calculated) Flush-Flo ^m ogical calcul @ Optimum as Optimum® be Flow (1/s) 2.1 2.5 2.6	Head (m) 1 1.500 1.500 	Flow (1/s) 3.0 2.6 e been based Should ar then these s Flow (1/s) 2.7 2.9 3.1	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000	Kick- over Head F ad/Dischard of control ting calcu Flow (1/s) 4.1 4.4 4.7	-Flo® 0 Range ge relation l device o lations wi Depth (m) 7.000 7.500 8.000	.671 - ther t ll be Flow	2 22 for the than a (1/s) 6.1 6.3 6.5
Design Point The hydrolo Hydro-Brake Hydro-Brake invalidated Depth (m) 0.100 0.200	Points (Calculated) Flush-Flom ogical calcul @ Optimum as Optimum® be Flow (1/s) 2.1 2.5 2.6 2.6	Head (m) 1 1.500 1.500 1.500 1.200 1.200 1.400	Flow (1/s) 3.0 2.6 e been based Should ar then these s Flow (1/s) 2.7 2.9	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500	Kick- over Head F ad/Dischard of control ting calcu Flow (1/s) 4.1 4.4	-Flo® 0 Range ge relation l device on lations wi Depth (m) 7.000 7.500 8.000 8.500	.671 - nship ther t ll be Flow	2 22 for the than a (1/s) 6.1 6.3
Design Point The hydrolo Hydro-Brake invalidated Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	Points (Calculated) Flush-Flo™ ogical calcul ® Optimum as Optimum® be Flow (1/s) 2.1 2.5 2.6 2.6 2.5 2.3	Head (m) 1 1.500 0.329 ations have specified. utilised t Depth (m) 1 1.200 1.400 1.600 1.800 2.000 2.200	Flow (1/s) 3.0 2.6 e been based Should ar then these s Flow (1/s) 2.7 2.9 3.1 3.3 3.4 3.6	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	Kick- over Head F ad/Dischard of contro ting calcu Flow (1/s) 4.1 4.4 4.7 5.0	-Flo® 0 Range ge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000	.671 - nship ther t ll be Flow	2 2 for the than a (1/s) 6.1 6.3 6.5 6.7
Design Point The hydrolo Hydro-Brake invalidated Depth (m) 0.100 0.200 0.300 0.400 0.500	Points (Calculated) Flush-Flo™ ogical calcul ® Optimum as Optimum® be Flow (1/s) 2.1 2.5 2.6 2.6 2.5 2.3 2.2	Head (m) 1 1.500 1.500 sations have specified. utilised t Depth (m) 1 1.200 1.400 1.600 1.800 2.000	Flow (1/s) 3.0 2.6 e been based Should ar then these s Flow (1/s) 2.7 2.9 3.1 3.3 3.4	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000	Kick- over Head F ad/Dischard of control ting calcu Flow (1/s) 4.1 4.4 4.7 5.0 5.2	-Flo® 0 Range ge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000	.671 - nship ther t ll be Flow	2 22 for the than a (1/s) 6.1 6.3 6.5 6.7 6.9

Weetwood		Page 13
Suite 1 Park House	5560	-
Broncoed Bus Park	Aber Road, Flint	100 A
Wrexham Rd Mold	Surface Water Calculations	Micco
Date 21/06/2022 10:21	Designed by TB	
File 2022-06-17 5560 SW R1.MDX	Checked by	Drainage
Micro Drainage	Network 2020.1	
<u>Storage</u>	Structures for Storm	
<u>Porous Car Park</u>	Manhole: S8, DS/PN: S1.000	
	mm/hr) 1000 Length (m)	10.0 0.0 5 3
<u>Complex Manho</u>	le: S7-TANK, DS/PN: S1.001	
<u>Ce</u>	<u>llular Storage</u>	
	t Level (m) 5.200 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Are	ea (m^2) Depth (m) Area (m^2) Inf. Area (m²)
0.000 975.0 0.400 975.0	0.0 0.0	0.0
<u>P</u> (orous Car Park	
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Po Invert Lev	mm/hr)1000Length (m)(1/s)13.9Slope (1:X)Factor2.0Depression Storage (mm)rosity0.30Evaporation (mm/day)	10.0 0.0 5 3
<u>Porous Car Park</u>	Manhole: S5, DS/PN: S3.000	
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Po Invert Lev	mm/hr)1000Length (m)(1/s)24.4Slope (1:X)Factor2.0 Depression Storage (mm)rosity0.30Evaporation (mm/day)	0.0 5 3
©19	32-2020 Innovyze	

Weetwood		Page 14
Suite 1 Park House	5560	
Broncoed Bus Park	Aber Road, Flint	a contra
Wrexham Rd Mold	Surface Water Calculations	Mirro
Date 21/06/2022 10:21	Designed by TB	Desinado
File 2022-06-17 5560 SW R1.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1	1

Porous Car Park Manhole: S1-FC, DS/PN: S1.004

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	3.8
Membrane Percolation (mm/hr)	1000	Length (m)	10.0
Max Percolation (l/s)	10.6	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	6.150	Cap Volume Depth (m)	0.320

Volume Summary (Static)

Length Calculations based on True Length

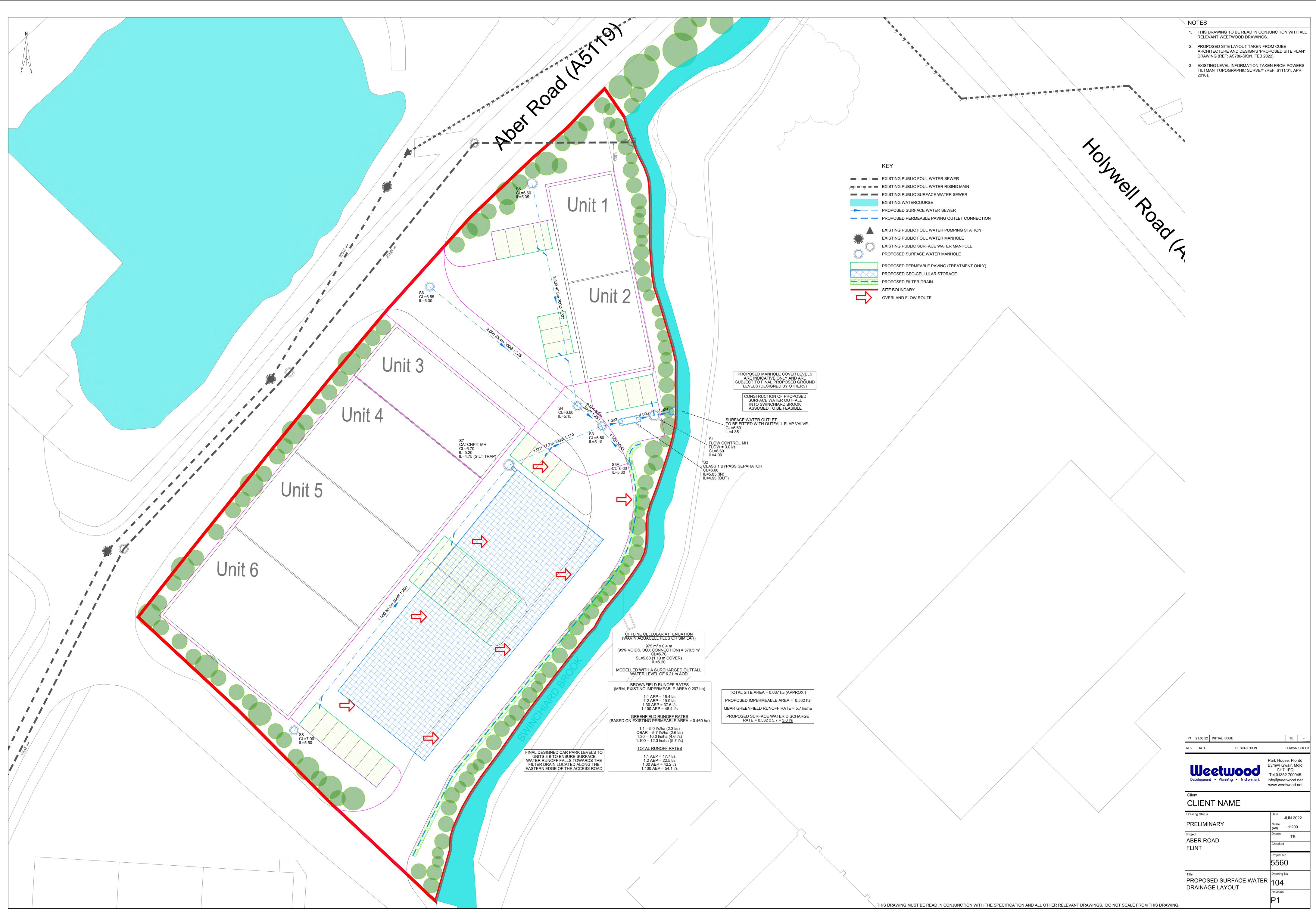
				Storage	
Pipe	USMH	Manhole	Pipe	Structure	Total
Number	Name	Volume (m ³)	Volume (m³)	Volume (m ³)	Volume (m³)
S1.000	S8	1.696	4.146	25.248	31.090
S1.001	S7-TANK	2.651	1.156	375.609	379.416
S2.000	S6	1.414	2.278	0.000	3.691
S3.000	S5	1.414	2.743	8.448	12.604
S2.001	S4	1.640	0.307	0.000	1.947
S4.000	S3A	1.470	0.495	0.000	1.965
S1.002	S3	1.696	0.148	0.000	1.845
S1.003	S2-BS	0.467	0.376	0.000	0.843
S1.004	S1-FC	3.004	0.143	3.648	6.796
Total		15.452	11.793	412.953	440.197

Weetwood		Page 15
Suite 1 Park House	5560	
Broncoed Bus Park	Aber Road, Flint	All and a second
Wrexham Rd Mold	Surface Water Calculations	Micco
Date 21/06/2022 10:21	Designed by TB	Micro
File 2022-06-17 5560 SW R1.MDX	Checked by	Drainage
Micro Drainage	Network 2020.1	
Micro Dialinage	Network 2020.1	
<u>1 year Return Period Summary of C</u>	ritical Results by Maximum Level <u>Storm</u>	<u>(Rank 1) for</u>
Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrographs 0 Number	0.500 Flow per Person per Day (l/per/day	e 2.000 t 0.800) 0.000 ea Diagrams 0
Synthe	etic Rainfall Details	me contrors o
Rainfall Model Region Enc	FSR Ratio R 0.352 fland and Wales Cv (Summer) 0.750	
M5-60 (mm)	18.000 Cv (Winter) 0.840	
רם עם	ting (mm) 300.0 Timestep 2.5 Second Increment (Extended) S Status OF D Status Of a Status Of	- 7
Profile(s) Duration(s) (mins)	Summer and Win 15, 30, 60, 120, 180, 240, 360, 480, 6 720, 960, 1	00,
Return Period(s) (years)	1, 30,	
Climate Change (%)	0, 0,	30
	been calculated as the structure is too Water Surcharged Floo	ded
US/MH	-	me Flow /
PN Name Event	(m) (m) (m ³) Cap.
S1.000 S8 15 minute 1 year W		0.28
S1.001 S7-TANK 1440 minute 1 year W		0.04
S2.000 S6 30 minute 1 year W		0.04
S3.000 S5 30 minute 1 year W S2.001 S4 30 minute 1 year W		000 0.09 000 0.15
S2.001 S4 30 minute 1 year W S4.000 S3A 30 minute 1 year W		0.15 000 0.14
S1.002 S3 30 minute 1 year W	inter I+0% 6.600 5.518 0.118 0.	0.07
S1.003 S2-BS 30 minute 1 year S		0.05
S1.004 S1-FC 30 minute 1 year S	ummer I+0% 6.600 5.521 0.321 0.	0.00
<u>©</u> 19	82-2020 Innovyze	

leetwood							Page 16
Suite 1 Park H	louse		5560	1			
Broncoed Bus Par	: k		Aber	Road, H	Flint		100 A
Irexham Rd Mold	ł		Surf	ace Wate	er Calcula	tions	Micco
Date 21/06/2022	10:21		Desi	gned by	TB		—— Micro
Tile 2022-06-17		W R1.MDX		ked by			Drainage
licro Drainage				ork 2020) 1		
			NC CM	018 2020	·		
l year Return Pe	eriod S	ummary c	of Criti	cal Resu	lts by Max	ximum	Level (Rank 1) for
			<u>S</u>	torm			
				Maximum	Half Drain	Pipe	
	US/MH	Overflow	Maximum	Velocity	Time	Flow	
PN	Name	(1/s)	Vol (m³)	(m/s)	(mins)	(l/s)	Status
S1.000	S8		0.117	0.8	6	19.0	OK
	S7-TANK		134.726		455	2.7	
S1.001 S2.000	S7 IMAR S6		0.250	0.5	100	2.6	
S3.000	S5		0.200	0.6	13		
S2.001	S4		4.869	0.3		9.5	SURCHARGED
S4.000	S3A		0.251			15.7	OK
S1.002	S3		2.399				SURCHARGED
S1.003	S2-BS		0.308	0.4			SURCHARGED
S1.004	S1-FC		1.464	0.0		0.0	SURCHARGED
			a1000 00	20 Innov			

Weetwood					Pac	ge 17
Suite 1 Park House	5560					
Broncoed Bus Park	Aber Road	l, Fli	nt			
Wrexham Rd Mold	Surface W	•		ations		
Date 21/06/2022 10:21				40115		icro
	Designed	-				rainago
File 2022-06-17 5560 SW R1.MDX	Checked b	-				annage
Micro Drainage	Network 2	2020.1				
<u>30 year Return Period Summary (</u>	of Critical for Stor		lts by	Maximum 1	Level ()	<u>Rank 1)</u>
Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s) Number of Input Hydrographs 0 Numbe	0 0.500 Flow ; 0.000 r of Offline	itional MADD F per Per Contro	Factor * Ir rson per ols 0 Nu	* 10m³/ha St hlet Coeffic c Day (l/per umber of Tir	corage 2. ecient 0. c/day) 0. ne/Area I	000 800 000 Diagrams
Number of Online Controls 1 Number	of Storage S [.]	tructur	es 4 Nu	umber of Rea	al Time (Controls
	hetic Rainfal					
Rainfall Model				R 0.352		
Region Er M5-60 (mm)	ngland and Wa 18.			r) 0.750 r) 0.840		
rio oo (nuu)	±0.			_, 0.010		
Margin for Flood Risk War	-				300.0	
-	s Timestep 2.	5 Seco	nd Incr	ement (Exte		
	DTS Status DVD Status				OFF ON	
	DVD Status tia Status				ON	
11101						
Profile(s) Duration(s) (mins)	15 30 6	0 120	180 3	Summer and 240 360 48		
Duracion(S) (mins)	±J, JU, 6	∪, ⊥∠∪,	±00 , 2		50, 800, 50, 1440	
Return Period(s) (years)				-	30, 100	
Climate Change (%)				C), 0, 30	
WARNING: Half Drain Time has no	ot been calcu	lated	as the	structure i	s too fu	11.
				Surcharged		(
US/MH PN Namo Evont			Level	Depth	Volume	
US/MH PN Name Event		US/CL (m)		-		Flow / Cap.
	Winter I+0%	(m)	Level	Depth	Volume	
PN Name Event \$1.000 \$8 15 minute 30 year \$1.001 \$7-TANK 1440 minute 30 year	Winter I+0%	(m) 6.950 6.700	Level (m) 5.634 5.498	Depth (m) -0.116 -0.002	Volume (m ³) 0.000 0.000	Cap. 0.68 0.05
PN Name Event \$1.000 \$8 15 minute 30 year \$1.001 \$7-TANK 1440 minute 30 year \$2.000 \$6 15 minute 30 year	Winter I+0% Winter I+0%	(m) 6.950 6.700 6.550	Level (m) 5.634 5.498 5.765	Depth (m) -0.116 -0.002 0.165	Volume (m ³) 0.000 0.000 0.000	Cap. 0.68 0.05 0.14
PN Name Event S1.000 S8 15 minute 30 year S1.001 S7-TANK 1440 minute 30 year S2.000 S6 15 minute 30 year S3.000 S5 15 minute 30 year	Winter I+0% Winter I+0% Summer I+0%	(m) 6.950 6.700 6.550 6.600	Level (m) 5.634 5.498 5.765 5.794	Depth (m) -0.116 -0.002 0.165 0.144	Volume (m ³) 0.000 0.000 0.000 0.000	Cap. 0.68 0.05 0.14 0.29
PN Name Event S1.000 S8 15 minute 30 year S1.001 S7-TANK 1440 minute 30 year S2.000 S6 15 minute 30 year S3.000 S5 15 minute 30 year S2.001 S4 15 minute 30 year	Winter I+0% Winter I+0% Summer I+0% Winter I+0%	(m) 6.950 6.700 6.550 6.600 6.600	Level (m) 5.634 5.498 5.765 5.794 5.753	Depth (m) -0.116 -0.002 0.165 0.144 0.303	Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Cap. 0.68 0.05 0.14 0.29 0.51
PN Name Event S1.000 S8 15 minute 30 year S1.001 S7-TANK 1440 minute 30 year S2.000 S6 15 minute 30 year S3.000 S5 15 minute 30 year S2.001 S4 15 minute 30 year S4.000 S3A 15 minute 30 year	Winter I+0% Winter I+0% Summer I+0% Winter I+0% Summer I+0%	(m) 6.950 6.700 6.550 6.600 6.600 6.600	Level (m) 5.634 5.498 5.765 5.794 5.753 5.810	Depth (m) -0.116 -0.002 0.165 0.144 0.303 0.210	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.68 0.05 0.14 0.29 0.51 0.46
PN Name Event S1.000 S8 15 minute 30 year S1.001 S7-TANK 1440 minute 30 year S2.000 S6 15 minute 30 year S3.000 S5 15 minute 30 year S2.001 S4 15 minute 30 year S4.000 S3A 15 minute 30 year S1.002 S3 15 minute 30 year	Winter I+0% Winter I+0% Summer I+0% Summer I+0% Winter I+0%	(m) 6.950 6.700 6.550 6.600 6.600 6.600 6.600	Level (m) 5.634 5.498 5.765 5.794 5.753	Depth (m) -0.116 -0.002 0.165 0.144 0.303	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.68 0.05 0.14 0.29 0.51
PN Name Event S1.000 S8 15 minute 30 year S1.001 S7-TANK 1440 minute 30 year S2.000 S6 15 minute 30 year S3.000 S5 15 minute 30 year S2.001 S4 15 minute 30 year S4.000 S3A 15 minute 30 year S1.002 S3 15 minute 30 year	Winter I+0% Winter I+0% Winter I+0% Summer I+0% Winter I+0% Winter I+0%	(m) 6.950 6.700 6.550 6.600 6.600 6.600 6.600 6.600	Level (m) 5.634 5.498 5.765 5.794 5.753 5.810 5.672	Depth (m) -0.116 -0.002 0.165 0.144 0.303 0.210 0.272	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.68 0.05 0.14 0.29 0.51 0.46 0.14
PN Name Event \$1.000 \$8 15 minute 30 year \$1.001 \$7-TANK 1440 minute 30 year \$2.000 \$6 15 minute 30 year \$3.000 \$5 15 minute 30 year \$2.001 \$4 15 minute 30 year \$4.000 \$3A 15 minute 30 year \$1.002 \$3 15 minute 30 year \$1.003 \$2-BS 15 minute 30 year	Winter I+0% Winter I+0% Winter I+0% Summer I+0% Winter I+0% Winter I+0%	(m) 6.950 6.700 6.550 6.600 6.600 6.600 6.600 6.600	Level (m) 5.634 5.498 5.765 5.794 5.753 5.810 5.672 5.688	Depth (m) -0.116 -0.002 0.165 0.144 0.303 0.210 0.272 0.438	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.68 0.05 0.14 0.29 0.51 0.46 0.14 0.13
PN Name Event S1.000 S8 15 minute 30 year S1.001 S7-TANK 1440 minute 30 year S2.000 S6 15 minute 30 year S3.000 S5 15 minute 30 year S2.001 S4 15 minute 30 year S4.000 S3A 15 minute 30 year S1.002 S3 15 minute 30 year S1.003 S2-BS 15 minute 30 year S1.004 S1-FC 30 minute 30 year	Winter I+0% Winter I+0% Winter I+0% Summer I+0% Winter I+0% Winter I+0%	(m) 6.950 6.700 6.550 6.600 6.600 6.600 6.600 6.600	Level (m) 5.634 5.498 5.765 5.794 5.753 5.810 5.672 5.688 5.702	Depth (m) -0.116 -0.002 0.165 0.144 0.303 0.210 0.272 0.438	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.68 0.05 0.14 0.29 0.51 0.46 0.14 0.13

Aber Road, Flint Aber Road, Flint Surface Water Calculations Micro Park Aber Road, Flint Surface Water Calculations Park Par	twood							Page 1
Kham Rd Mold Surface Water Calculations a 2022-06-17 5560 SW R1.MDX Designed by TB c 2022-06-17 5560 SW R1.MDX Checked by ro Drainage Network 2020.1 o year Return Period Summary of Critical Results by Maximum Level (Rank for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 S8 0.203 1.0 6 46.3 OK \$1.001 S7-TANK 278.766 0.2 989 3.6 OK \$2.000 S6 0.520 0.6 9.2 SURCHARGED \$3.000 S5 0.497 0.7 5 2.0.8 SURCHARGED \$2.001 S4 5.697 0.4 31.1 SURCHARGED \$3.000 S3 0.571 1.2 51.3 SURCHARGED \$4.000 S3A 0.571 1.2 51.3 SURCHARGED \$1.002 S3 2.599 0.6 8.7 SURCHARGED	te 1 Park	House		5560)			
a 21/06/2022 10:21 Designed by TB a 2022-06-17 5560 SW R1.MDX Checked by ro Drainage Network 2020.1 b year Return Period Summary of Critical Results by Maximum Level (Rank for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) S1.000 S8 S1.001 S7-TANK S2.000 S6 S3.000 S5 S1.001 S4 S2.001 S4 S4.000 S3A S1.002 S3 S2.001 S4 S4.000 S3A S1.002 S3 S2.001 S4 S4.000 S3A S1.002 S3 S1.003 S2-BS S2.599 0.6 S1.003 S2-BS	ncoed Bus Pa	rk		Aber	Road, F	lint		
be 21/06/2022 10:21 Designed by TB c 2022-06-17 5560 SW R1.MDX Checked by co Drainage Network 2020.1 o year Return Period Summary of Critical Results by Maximum Level (Rank for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) S1.000 S8 0.2001 S1.001 S7-TANK 278.766 0.497 0.7 S2.000 S6 0.497 0.7 S2.001 S4 S4.000 S3A 0.571 1.2 S1.002 S3 S1.003 S2-BS 0.356 0.55	xham Rd Mol	d		Surf	ace Wate	er Calcula	tions	Micco
State of the second and the second	e 21/06/2022	10:21		Desi	gned by	ТВ		
) year Return Period Summary of Critical Results by Maximum Level (Rank for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 \$8 0.203 1.0 6 46.3 OK \$1.001 \$7-TANK 278.766 0.2 989 3.6 OK \$2.000 \$6 0.520 0.6 9.2 SURCHARGED \$3.000 \$5 0.497 0.7 \$5 20.8 SURCHARGED \$2.001 \$4 \$.697 0.4 31.1 SURCHARGED \$4.000 \$3A 0.571 1.2 \$1.3 SURCHARGED \$1.002 \$3 2.599 0.6 8.7 SURCHARGED \$1.003 \$2-BS 0.356 0.5 7.8 SURCHARGED	e 2022-06-17	5560 S	W R1.MDX	K Chec	ked by			Uldii
) year Return Period Summary of Critical Results by Maximum Level (Rank for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 \$8 0.203 1.0 6 46.3 OK \$1.001 \$7-TANK 278.766 0.2 989 3.6 OK \$2.000 \$6 0.520 0.6 9.2 SURCHARGED \$3.000 \$5 0.497 0.7 \$5 20.8 SURCHARGED \$2.001 \$4 \$.697 0.4 31.1 SURCHARGED \$4.000 \$3A 0.571 1.2 \$1.3 SURCHARGED \$1.002 \$3 2.599 0.6 8.7 SURCHARGED \$1.003 \$2-BS 0.356 0.5 7.8 SURCHARGED	ro Drainage			Netw	ork 2020	0.1		
US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status S1.000 S8 0.203 1.0 6 46.3 OK S1.001 S7-TANK 278.766 0.2 989 3.6 OK S2.000 S6 0.520 0.6 9.2 SURCHARGED S3.000 S5 0.497 0.7 5 20.8 SURCHARGED S2.001 S4 5.697 0.4 31.1 SURCHARGED S4.000 S3A 0.571 1.2 51.3 SURCHARGED S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED	<u>0 year Retur</u>	<u>n Perio</u>	<u>d Summar</u>			esults by	<u>Maxim</u>	um Level (Rank
PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status S1.000 S8 0.203 1.0 6 46.3 OK S1.001 S7-TANK 278.766 0.2 989 3.6 OK S2.000 S6 0.520 0.6 9.2 SURCHARGED S3.000 S5 0.497 0.7 5 20.8 SURCHARGED S2.001 S4 5.697 0.4 31.1 SURCHARGED S4.000 S3A 0.571 1.2 51.3 SURCHARGED S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED					Maximum	Half Drain	Pipe	
S1.000S80.2031.0646.3OKS1.001S7-TANK278.7660.29893.6OKS2.000S60.5200.69.2SURCHARGEDS3.000S50.4970.7520.8SURCHARGEDS2.001S45.6970.431.1SURCHARGEDS4.000S3A0.5711.251.3SURCHARGEDS1.002S32.5990.68.7SURCHARGEDS1.003S2-BS0.3560.57.8SURCHARGED		US/MH	Overflow	Maximum	Velocity	Time	Flow	
S1.001 S7-TANK 278.766 0.2 989 3.6 OK S2.000 S6 0.520 0.6 9.2 SURCHARGED S3.000 S5 0.497 0.7 5 20.8 SURCHARGED S2.001 S4 5.697 0.4 31.1 SURCHARGED S4.000 S3A 0.571 1.2 51.3 SURCHARGED S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED	PN	Name	(1/s)	Vol (m³)	(m/s)	(mins)	(l/s)	Status
S1.001 S7-TANK 278.766 0.2 989 3.6 OK S2.000 S6 0.520 0.6 9.2 SURCHARGED S3.000 S5 0.497 0.7 5 20.8 SURCHARGED S2.001 S4 5.697 0.4 31.1 SURCHARGED S4.000 S3A 0.571 1.2 51.3 SURCHARGED S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED	S1.000	S8		0.203	1.0	6	46.3	OK
S2.000 S6 0.520 0.6 9.2 SURCHARGED S3.000 S5 0.497 0.7 5 20.8 SURCHARGED S2.001 S4 5.697 0.4 31.1 SURCHARGED S4.000 S3A 0.571 1.2 51.3 SURCHARGED S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED								
S2.001 S4 5.697 0.4 31.1 SURCHARGED S4.000 S3A 0.571 1.2 51.3 SURCHARGED S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED								
S2.001 S4 5.697 0.4 31.1 SURCHARGED S4.000 S3A 0.571 1.2 51.3 SURCHARGED S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED	S3.000	S5		0.497	0.7	5	20.8	SURCHARGED
S1.002 S3 2.599 0.6 8.7 SURCHARGED S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED		S4						
S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED	S4.000						51.3	SURCHARGED
S1.003 S2-BS 0.356 0.5 7.8 SURCHARGED	S1.002	S3		2.599	0.6		8.7	SURCHARGED
S1.004 S1-FC 1.785 0.0 0.0 SURCHARGED	S1.003	S2-BS		0.356	0.5			
	S1.004	S1-FC		1.785			0.0	SURCHARGED


leetwood								Pag	e 19
Suite 1 Park	House		5560						
Broncoed Bus P	ark		Aber	Road,	Flin	ıt		1	÷
Irexham Rd Mo	ld		Surfa	ace Wa	ter C	alculat	cions	Mi	cro
Date 21/06/202	2 10:21		Desig	gned b	у ТВ				
ile 2022-06-1	7 5560 SW J	R1.MDX	Checl	ked by	,				ainagi
Micro Drainage				ork 20					
<u>100 year Retu</u>	<u>ırn Period</u>	Summary_		tical Storm		<u>lts by l</u>	<u>Maximum I</u>	<u>evel (F</u>	<u>(ank 1)</u>
		<u>S</u>	imulati	on Crit	eria				
A	real Reducti								
	Hot Sta Hot Start L				IADD Fa		LOm³/ha Sto et Coeffieo		
	adloss Coeff age per hect	(Global)	0.500		er Pers				
Number of Input Number of Onli									2
		<u>Syn</u> tl	netic Ra	<u>infal</u> l	<u>Deta</u> i	<u>ls</u>			
	Rainfall	l Model		F	SR	Ratio R			
		Region Er							
	M5-6	60 (mm)		18.0	00 Cv	(Winter)	0.840		
Mar	gin for Flood	d Risk War	ning (m	m)			3	00.0	
		-		-	Secon	d Increm	ent (Exten		
			TS Stat					OFF	
			OVD Stat					ON ON	
	Prof	file(s)				2	Summer and	Winter	
	Duration(s)	(mins)	15,	30, 60,	120,	180, 240			
Poturr	n Period(s) ((voare)					720, 960), 1440 30, 100	
Recuir	Climate Chan						-	0, 30	
US/MH					US/CL		Surcharged Depth	Flooded Volume	Flow /
PN Name		Event			(m)	(m)	(m)	(m ³)	Cap.
s1.000 s8	1440 minute	100 vear	Winter	T+30%	6,950	6.459	0.709	0.000	0.06
S1.000 S7-TANK		-				6.458	0.958	0.000	0.08
S2.000 S6	1440 minute	100 year	Winter	I+30%	6.550	6.457	0.857	0.000	0.01
	1440 minute	-				6.457	0.807	0.000	0.03
	1440 minute	-				6.457	1.007	0.000	0.09
	1440 minute	-				6.458 6.457	0.858 1.057	0.000	0.05 0.15
	1440 minute 1440 minute	-				6.457 6.456	1.057	0.000	0.13
	1440 minute	-				6.455	1.255	0.000	0.05

oncoed Bus Park Aber Road, Flint exham Rd Mold Surface Water Calculations	leetwood							I	Page
exham Rd Mold Surface Water Calculations te 21/06/2022 10:21 Designed by TB le 2022-06-17 5560 SW R1.MDX Checked by cro Drainage Network 2020.1 Maximum Half Drain Pipe JS/MH Overflow Maximum Velocity Time Flow FN Name 1.136 0.6 356 4.2 SURCHARGED S1.000 S8 1.136 0.6 356 4.2 SURCHARGED S1.001 S7-TANK 380.288 0.1 5.7 FLOOD RISK S2.000 S6 1.303 0.2 1.0 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK	uite 1 Park	House		5560)			[
exham Rd Mold Surface Water Calculations te 21/06/2022 10:21 Designed by TB le 2022-06-17 5560 SW R1.MDX Checked by cro Drainage Network 2020.1 Maximum Half Drain Pipe JS/MH Overflow Maximum Velocity Time Flow FN Name 1.136 0.6 356 4.2 SURCHARGED S1.000 S8 1.136 0.6 356 4.2 SURCHARGED S1.001 S7-TANK 380.288 0.1 5.7 FLOOD RISK S2.000 S6 1.303 0.2 1.0 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK	oncoed Bus Pa	rk		Abei	Road, I	Flint			۹.
te 21/06/2022 10:21 le 2022-06-17 5560 SW R1.MDX cro Drainage 00 year Return Period Summary of Critical Results by Maximum Level for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m ³) (m/s) (mins) (1/s) Status S1.000 S8 1.136 0.6 356 4.2 SURCHARGED S1.001 S7-TANK 380.288 0.1 5.7 FLOOD RISK S2.000 S6 1.303 0.2 1.0 FLOOD RISK S3.000 S5 9.361 0.4 280 2.2 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK							tions		Min
le 2022-06-17 5560 SW R1.MDX Checked by Cro Drainage Network 2020.1 OO year Return Period Summary of Critical Results by Maximum Level for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m ³) (m/s) (mins) (1/s) Status S1.000 S8 1.136 0.6 356 4.2 SURCHARGED S1.001 S7-TANK 380.288 0.1 5.7 FLOOD RISK S2.000 S6 1.303 0.2 1.0 FLOOD RISK S3.000 S5 9.361 0.4 280 2.2 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK									Mic
cro Drainage Network 2020.1 Maximum Half Drain Pipe Maximum Half Drain Pipe Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 \$8 1.136 0.6 356 4.2 SURCHARGED \$1.001 \$7-TANK 380.288 0.1 5.7 FLOOD RISK \$2.000 \$6 1.303 0.2 1.0 FLOOD RISK \$3.000 \$5 9.361 0.4 280 2.2 FLOOD RISK \$2.001 \$4 6.493 0.1 5.5 FLOOD RISK 5.5 FLOOD RISK \$4.000 \$3A 1.304 0.7 6.0 FLOOD RISK \$1.002 \$3 3.488 0.3 9.3 FLOOD RISK \$1.003 \$2-BS 0.573 0.2 8.0 FLOOD RISK			עם ארם אוי			ID			Dra
.00 year Return Period Summary of Critical Results by Maximum Level for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 \$8 1.136 0.6 356 4.2 SURCHARGED \$1.001 \$7-TANK 380.288 0.1 5.7 FLOOD RISK \$2.000 \$6 1.303 0.2 1.0 FLOOD RISK \$3.000 \$5 9.361 0.4 280 2.2 FLOOD RISK \$2.001 \$4 6.493 0.1 5.5 FLOOD RISK \$4.000 \$3A 1.304 0.7 6.0 FLOOD RISK \$1.002 \$3 3.488 0.3 9.3 FLOOD RISK \$1.003 \$2-BS 0.573 0.2 8.0 FLOOD RISK		JJ00 2	W KI.MDA						
for Storm Maximum Half Drain Pipe US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) Time Flow \$1.000 \$8 1.136 0.6 356 4.2 SURCHARGED \$1.001 \$7-TANK 380.288 0.1 5.7 FLOOD RISK \$2.000 \$6 1.303 0.2 1.0 FLOOD RISK \$3.000 \$5 9.361 0.4 280 2.2 FLOOD RISK \$2.001 \$4 6.493 0.1 5.5 FLOOD RISK \$4.000 \$3A 1.304 0.7 6.0 FLOOD RISK \$1.002 \$3 3.488 0.3 9.3 FLOOD RISK \$1.003 \$2-BS 0.573 0.2 8.0 FLOOD RISK	icro Drainage			Netv	JORK 2020).1			
US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 S8 1.136 0.6 356 4.2 SURCHARGED \$1.001 \$7-TANK 380.288 0.1 5.7 FLOOD RISK \$2.000 \$6 1.303 0.2 1.0 FLOOD RISK \$3.000 \$5 9.361 0.4 280 2.2 FLOOD RISK \$2.001 \$4 6.493 0.1 5.5 FLOOD RISK \$4.000 \$3A 1.304 0.7 6.0 FLOOD RISK \$1.002 \$3 3.488 0.3 9.3 FLOOD RISK \$1.003 \$2-BS 0.573 0.2 8.0 FLOOD RISK	<u>100 year Retur</u>	n Perio	od Summaı			esults by	Maxin	num Level	(Rá
US/MH Overflow Maximum Velocity Time Flow PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 S8 1.136 0.6 356 4.2 SURCHARGED \$1.001 \$7-TANK 380.288 0.1 5.7 FLOOD RISK \$2.000 \$6 1.303 0.2 1.0 FLOOD RISK \$3.000 \$5 9.361 0.4 280 2.2 FLOOD RISK \$2.001 \$4 6.493 0.1 5.5 FLOOD RISK \$4.000 \$3A 1.304 0.7 6.0 FLOOD RISK \$1.002 \$3 3.488 0.3 9.3 FLOOD RISK \$1.003 \$2-BS 0.573 0.2 8.0 FLOOD RISK									
PN Name (1/s) Vol (m³) (m/s) (mins) (1/s) Status \$1.000 \$8 1.136 0.6 356 4.2 SURCHARGED \$1.001 \$7-TANK 380.288 0.1 5.7 FLOOD RISK \$2.000 \$6 1.303 0.2 1.0 FLOOD RISK \$3.000 \$5 9.361 0.4 280 2.2 FLOOD RISK \$2.001 \$4 6.493 0.1 5.5 FLOOD RISK \$4.000 \$3A 1.304 0.7 6.0 FLOOD RISK \$1.002 \$3 3.488 0.3 9.3 FLOOD RISK \$1.003 \$2-BS 0.573 0.2 8.0 FLOOD RISK							Pipe		
S1.000 S8 1.136 0.6 356 4.2 SURCHARGED S1.001 S7-TANK 380.288 0.1 5.7 FLOOD RISK S2.000 S6 1.303 0.2 1.0 FLOOD RISK S3.000 S5 9.361 0.4 280 2.2 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK									
S1.001 S7-TANK 380.288 0.1 5.7 FLOOD RISK S2.000 S6 1.303 0.2 1.0 FLOOD RISK S3.000 S5 9.361 0.4 280 2.2 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK	PN	Name	(1/s)	Vol (m³)	(m/s)	(mins)	(l/s)	Status	
S1.001 S7-TANK 380.288 0.1 5.7 FLOOD RISK S2.000 S6 1.303 0.2 1.0 FLOOD RISK S3.000 S5 9.361 0.4 280 2.2 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK	s1.000	S8		1.136	0.6	356	4.2	SURCHARGE	D
S2.000 S6 1.303 0.2 1.0 FLOOD RISK S3.000 S5 9.361 0.4 280 2.2 FLOOD RISK S2.001 S4 6.493 0.1 5.5 FLOOD RISK S4.000 S3A 1.304 0.7 6.0 FLOOD RISK S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK									
\$3.000 \$5 9.361 0.4 280 2.2 FLOOD RISK \$2.001 \$4 6.493 0.1 5.5 FLOOD RISK \$4.000 \$3A 1.304 0.7 6.0 FLOOD RISK \$1.002 \$3 3.488 0.3 9.3 FLOOD RISK \$1.003 \$2-BS 0.573 0.2 8.0 FLOOD RISK									
\$\$4.000\$ \$\$3A\$ 1.304 0.7 6.0 FLOOD RISK \$\$1.002\$ \$\$3\$ 3.488 0.3 9.3 FLOOD RISK \$\$1.003\$ \$\$2-BS\$ 0.573 0.2 8.0 FLOOD RISK	S3.000	S5				280	2.2	FLOOD RIS	K
S1.002 S3 3.488 0.3 9.3 FLOOD RISK S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK	S2.001	S4		6.493	0.1		5.5	FLOOD RIS	K
S1.003 S2-BS 0.573 0.2 8.0 FLOOD RISK	S4.000	S3A		1.304	0.7		6.0	FLOOD RIS	K
	S1.002	S3		3.488	0.3		9.3	FLOOD RIS	K
S1.004 S1-FC 6.596 0.8 311 3.0 FLOOD RISK	S1.003	S2-BS		0.573	0.2				
	S1.004	S1-FC		6.596	0.8	311	3.0	FLOOD RIS	К

APPENDIX L

Preliminary Surface Water Drainage Layout

Delivering client focussed services from offices nationally

Flood Risk Assessments Flood Consequences Assessments Surface Water Drainage Foul Water Drainage Environmental Impact Assessments River Realignment and Restoration Water Framework Directive Assessments Environmental Permit and Land Drainage Applications Sequential, Justification and Exception Tests Utility Assessments Expert Witness and Planning Appeals Discharge of Planning Conditions

www.weetwood.net